Using Neural Networks in Time Series to Forecast Oil Prices in Iraq
DOI:
https://doi.org/10.25098/1.3.18Keywords:
التنبؤ, السلاسل الزمنية, الشبكات العصبيةAbstract
This research represents an attempt by the researchers to use the new mechanism not traditional in the prediction of oil prices in Iraq, using neural networks, it is clear, that any model or any formula or any data can be expressed in a time series can be used in the characterization of the subject of expectations through All previous observations or variables counter weight chronologically. under the enormous development in the software field Where the simulation of the work of the neuron was reached where called neural network, where it is identifying the problem under study and then an occasion of neural network design work, and that the neural network work is based on the education and training of the network to reduce the error coefficient to the lowest level by adjusting the value of the weights midwife to estimate in advance the model known structure, where they were in this study the use of artificial neural networks to predict the price of oil for five years to come is (2016,2017, 2018,2019, 2020) where it was to get these prices, the research found that the use of neural networks is better than normal methods , so as to overcome the basic assumptions in the estimation.
References
المصادر العربية :
الجبوري، عبير حسن علي" التنبؤ بأسعار النفط العراقي لعام 2010 باستخدام السلاسل الزمنية" مجلة جامعة بابل، العلوم الإنسانية، المجلد 18، العدد 1، 2010.
ايمان، طالي معمر " دراسة تحليلية قياسية للاستهلاك العائلي للكهرباء- دراسة حالة سونلغاز وحدة البويرة- خلال الفترة 2008:1 – 2013:12" وزارة التعليم العالي والبحث العلمي – جامعة اكلي محند اولحاج – البويرة- كلية العلوم الاقتصادية والتجارية وعلوم التسيير،2014
بري، د. عدنان ماجد عبد الرحمن" طرق التنبؤ الاحصائي- الجزء الأول- " جامعة الملك سعود، قسم الإحصاء وبحوث العمليات،2002.
شعراوي، د. سمير مصطفى" مقدمة في التحليل الحديث للسلاسل الزمنية" المملكة العربية السعودية- جامعة الملك عبد العزيز- كلية العلوم- مركز النشر العلمي،2005.
المصادر الاجنبية :
Michael Negnevitsky,2005," Artificial Intelligence AGuide to Intelligent Systems", Second Edition,ISBN 0321204662
Sumathi S.,Surekha p.,2010, "Computational Intelligence Paradigms Theory and Applications Using MATLAB", by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business.
Smith, Anderw. (2004). “Branch Prediction with Neural Networks:Hidden layers and Recurrent Connections”,Department of Computer Science, University of California, San Diego, USA.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
SJCUS's open access articles are published under a Creative Commons Attribution CC-BY-NC-ND 4.0 license.
