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Abstract: 

Groundwater is one of the common essential water resources for billions of people, especially for 

many developing countries in Asia. Indeed, climate variation is one factor in the quantity and quality 

of groundwater resources in the world. The study used time-series data, it can be used to understand 

the past as well as predict the future. 

Additionally, were taken climate index (Rainfall) to show and understand ground water level is 

affected by external factors and show the relationship between them. For this purpose, using 

groundwater level data during (7) years period contained 89 observation of data; beginning from (Jan 

2013) through (May 2020) in the center of Sulaymaniyah city. Additionally, the climate variability 

data and groundwater data are monthly through a duration time. 

The objective of this study Fitting the suitable Seasonal Autoregressive Integrated Moving 

Average (SARIMA) and Seasonal Autoregressive Integrated Moving Average with Explanatory 

variable (SARIMAX) model to studies the relationship between the climate variation and 

groundwater level. Finally, after added climate variability (Rainfall) to the SARIMA model, study 

showed the ground water level is affected by external factors. while, coefficient of external factor is 

positive and significant at %5 level of significant. This showed ARIMAX (0,1,0) x (1,0,1)12 with 

AIC (456.744) is a best model. 

Keywords: SARIMA, SARIMAX, groundwater level, climate variability. 

 

 الملخص:
 

المشتركة لمليارات البشر،  المياه الجوفية هي أحد موارد المياه الأساسيةالمياه الجوفية هي أحد موارد المياه الأساسية المشترك 

. في الواقع ، يعد تغير المناخ أحد العوامل في كمية ونوعية موارد المياه الجوفية في العالم. وخاصة للعديد من البلدان النامية في آسيا

إلى ذلك تم أخذ مؤشر بالإضافة  .استخدمت الدراسة بيانات السلاسل الزمنية ، يمكن استخدامه لفهم الماضي وكذلك التنبؤ بالمستقبل

لهذا الغرض، فإن . لإظهار وفهم تأثر منسوب المياه الجوفية بالعوامل الخارجية وإظهار العلاقة بينهما (هطول الأمطار)  المناخ

 مايو)حتى ( 2013يناير )بداية من . ملاحظة للبيانات( 89)سنوات يحتوي على( 7)استخدام بيانات مستوى المياه الجوفية خلال فترة 

الهدف  .بالإضافة إلى ذلك ، فإن بيانات تقلبات المناخ وبيانات المياه الجوفية الشهرية خلال فترة زمنية. وسط مدينة السليمانية( 2020

والنموزج الخاص  (SARIMA) المتحرك الموسمي المتكامل الانحدار الذاتيمن هذه الدراسة ملاءمة النموزج الخاص بالمتوسط 

لدراسة العلاقة بين التغير المناخي  (SARIMAX) ك الانحدار الذاتي الموسمي المتكامل مع المتغير التوضيحيالمتحربالمتوسط 

، أظهرت الدراسة أن  SARIMA إلى نموذج( هطول الأمطار)أخيرًا ، بعد إضافة عامل تقلبات المناخ . ومستوى المياه الجوفية
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. ٪ من المعنوية5في حين أن معامل العامل الخارجي موجب ومعنوي عند مستوى  .مستوى المياه الجوفية تتأثر بالعوامل الخارجية

 .AIC (456.744) هو الافضل مع قيمة ARIMAX (0،1،0) × (1،0،1) 12 أظهر أن

المتحرك توسط النموزج الخاص بالم، لذاتيمتحرك الموسمى المتكامل الأنحدار االنموزج الخاص بالمتوسط ال الكلمات المفتاحية:

 .التغير المناخ، مستوى المياه الجوفيةمع المتغير التوضيحي،  الموسمي المتكامل الانحدار الذاتي

  :پوختە

ئاوی ژێر زەوی يهکێکه لهسهرچاوە ئاوييه بنهڕەتييه باوەکان بۆ مليارەها کهس ، بهتايبهتی بۆ زۆرێک لهوڵاتانی پێشکهوتووی 

توێژينهوەکه . له چهندێتی و چۆنيهتی ی سهرچاوەکانی ئاوی ژێر زەوی له جيهاندا  رێکهبێگومان گۆڕانی کهشوههوا فاکته. ئاسيا

 داتای زنجيرەی کاتی بهکارهێناوە، دەتوانرێت بۆ تێگهيشتن له ڕابردوو و ههروەها پێشبينی کردنی داهاتوو بهکاربهێنرێت

وەرگيرابۆ پيشاندان و تێگهيشتن له ئاستی ئاوی ژێر زەوی، کاريگهری فاکتهری  (باران)ههروەها ئيندێکسی کهش و ههوا 

 89ساڵدا (  7) بۆ ئهم مهبهستهش بهکارهێنانی داتای ئاستی ئاوی ژێر زەوی لهماوەی . دەرەکی و نيشاندانی پهيوەندی نێوانيان

لهگهڵ . له ناوەندی شاری سلێمانی (  2020 ردانیزهجۆ)   ەوە بۆ(  2013ندانیڕێبه) ؛ سهرەتا له  وةچاودێری داتای لهخۆگرت

 .ماوەدايه وئاوی ژێر زەوی له ماوەی ئه مانگانه ی ئهوەش، داتای جياوازی ئاووههوا و داتای 

کانی کاتی زنجيره  (SARIMA)کانی کاتی ساريماوڵبژاردنی گونجاوترين مۆدێلی زنجيرههه يهوهم لێکۆڵينهئامانجی ئه

دواجار دوای ئهوەی . ئاووههوا و ئاستی ئاوی ژێر زەوی بۆ لێکۆڵينهوە له پهيوەندی نێوان گۆڕاوی  (SARIMAX) ساريماکسه

، لێکۆڵينهوەکه نيشانی دا ئاستی ئاوی ژێر زەوی  SARIMAبۆ سهر مۆدێلی ( بارانبارين ) که گۆڕانکاری کهشوههوای زيادکراو 

 جینموزه. ی بهرچاو 5لهکاتێکدا، هاوکۆلکهی دەرەکی و ئهرێنی و بهرچاوە له ئاستی ٪. هری دەرەکی  ههيه کاريگهری فاکت

SARIMAX (0,1,0)x(1,0,1)12  ڵگهله AIC (456.744)  باشترين مۆدێله.  

 و و ههوا.زنجيرەکانی کارتی ساريما، زنجيرەکانی کارتی ساريماکس، ئاستی ئاوی زەوی، گۆڕاوی ئا کليلە وشە:

 

1. Introduction: 

        Gound water is an almost universal source of generally high-quality freshwater. These 

characteristics promote its overall development, scaled and localized to demand, obviating substantial 

infrastructure needs. Globally, groundwater is the cause of one-third of all freshwater withdrawals, 

supplying an estimated 36%, 42%, and 27% of the water used for domestic, agricultural, and 

industrial purposes respectively. In many environments, natural groundwater discharges sustain 

baseflow to rivers, lakes, and wetlands during low or no rainfall periods. In addition, the statistical 

tools could be analyzed these problems, especially when time is a significant factor in them. Time 

series analysis is one of the powerful statistical tools used to forecast the groundwater level and study 

the relationship between climate variation and groundwater level. 

1.1 Objective of the Study 

 Fitting the suitable Seasonal Autoregressive Integrated Moving Average with Explanatory 

(SARIMAX) model to studies the relationship between the climate variation and groundwater level 

and compare two methods. These are SARIMA and SARIMAX to choose high accuracy of the 

forecasting model. can be used this model to develop procedures for forecasting groundwater levels. 
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2. Literature Review 

 (Arunraj, N. S., et al., 2016) In the study, develop a Seasonal Autoregressive Integrated Moving 

Average with external variables (SARIMAX) model which tries to account for all the effects due to 

the demand influencing factors, to forecast the daily sales of perishable foods in a retail store. 

Concerning performance measures, it is found that the proposed SARIMAX model improves the 

traditional Seasonal Autoregressive Integrated Moving Average (SARIMA) model. [3] 

(Chiu, L. Y., et al., 2019) This study aims to improve a model for predicting the possible increase 

in the whitefly population in greenhouses applying autoregressive integrated moving average 

(ARIMA) and ARIMA with exogenous variables (ARIMAX). The proposed ARIMAX model can be 

used to assist farmers in decision-making for pesticide application scheduling. This research proves 

that the best model for predicting the incidence of whiteflies was ARIMAX, with temperature and 

humidity included as the exogenous factors. [8] 

(Farih, L. N., et al., 2019) This thesis aims to estimate the total departure of ship customers in the 

main port of Makassar working the ARIMAX method with the effects of calendar variations. 

Moreover, the ARIMAX method is a system that can be used when there are exogenous variables, 

where in this example, the exogenous variable is in the form of a variable dummy which is the Eid 

holidays. Finally, these forecasting outcomes show that the ARIMAX (2,1,0) (0,0,1)12 method has a 

relatively small accuracy with the MAPE value of 14.08%. [11] 

 (Ling, A. S. C., et al., 2019) This study proposes to develop an Autoregressive Integrated Moving 

Average with external variables (ARIMAX) model, which tries to account for the effects due to the 

climatic influencing factors, to forecast the weekly cocoa black pod disease incidence. A study found 

that The ARIMAX models performed well with lower error as compared to the ARIMA models.  Key 

findings indicate that maximum temperature and relative humidity have a significant correlation with 

black pod incidence and are suggested as indicators in forecasting the cocoa black pod incidence. [15] 

(Tadesse, K. B., & Dinka, M. O., 2017) In this study, the Waterval River flood was forecasted by 

the SARIMA model.  Monthly flows from 1960 to 2016 were done for modeling and forecasting. 

Based on seasonally differenced correlogram characteristics, many SARIMA models were evaluated. 

Their parameters were optimized, and a diagnostic checkup of estimates was made applying white 

noise and heteroscedasticity tests. Lastly, based on minimum Akaike Information (AI) and Hannan–

Quinn (HQ) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 model chosen for Waterval River flow 

forecasting. [18] 

(Gikungu, S. W., et al., 2015) In this research, Seasonal Autoregressive Integrated Moving 

Average (SARIMA) model is developed to forecast Kenya's inflation measure using quarterly data 

from 1981 to 2013 obtained from KNBS. SARIMA (0,1,0) (0,0,1)4 was identified as the most suitable 

model. The predictive ability tests RMSE=0.2871, MAPE=3.9456, and MAE= 0.2369 showed that 

the model was fitting for forecasting the inflation rate in Kenya.[12] 

 (Cools, M. et al., 2009) In this study, daily traffic counts are explained and forecasted by different 

modeling philosophies, namely the ARIMAX and SARIMA(X) modeling approaches. Particular 

emphasis is put on investigating the seasonality in the daily traffic data and on the identification and 

http://dx.doi.org/10.25098/5.2.17
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comparison of holiday effects at different site locations. Finally, results revealed that the ARIMAX 

and SARIMAX modeling approaches are practical frameworks for identifying and quantifying 

possible influencing effects..[9]  

3. Materials and Methods  

3.1 Time series analysis 

Time series analysis is done for mainly two reasons: 

1. Understanding the behavior of the process by studying its records to model and identify the 

main parameters that influence the time series and identify its components. 

2. Forecasting the future values of the series using an adequate model that has been trained on 

past values. 
 

The initial action in the analysis of each time series is to plot the data. If there are apparent 

discontinuities in the series, such as an immediate change of level, it may be advisable to investigate 

the series by first breaking it into homogeneous segments. If there are external observations, they 

should be studied carefully to check whether there is any justification for discarding them (for 

instance, if an observation has been recorded of any other process by blunder) [13],[17]. 

3.1.1 time series 

A time series is a collection of measures introduced sequentially into time. It is mathematically 

defined as a collection of vectors in which the index parameter (T) is the time-space or a set of 

observations (indexed by time). The variable treat as a random variable.  

These observations can be as different as numbers, labels, colors, and many others. Furthermore, 

these measurements may be made continuously within time or be taken at a discrete set of time 

duration. By convention, these two kinds of series are named continuous and discrete-time series, 

respectively, even though the regular variable may be discrete or continuous in each case [1],[7]. 

3.1.2 components of a time series 

The signal in time series data usually is divided into four components: Trend, seasonal, cyclical, 

and irregular. Each of these components describes a different mechanism by which past values of a 

time series may be related to the present value [4]. 

discuss each of these components: 

1. Trend (T) 

2. Seasonal Variation (S) 

3. Cyclical Variation (C) 

4. Irregular Variation (I) 
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3.1.3 Attribute of Time Series 

 Stationary Time Series  

The basis for any time series analysis is stationary time series. It is essential for stationary time 

series that we can develop models and forecasts. However, it is the nonstationary time series that is 

most interesting in many applications, especially in business and economics. Similarly, when 

processes are left alone in industrial applications, they are expected to show nonstationary behavior 

simply following the second law of thermodynamics. Therefore, while in real-life applications, it 

happens only under specific situations, the stationary time series play a vital role as the foundation 

for time series analysis [5]. 

 Non-Stationary Time Series   

They could have nonconstant means µ, time-varying second such as nonconstant variance 𝜎2, or 

both properties. 

Many applications with nonstationary data use different methods (d) from Non-Stationary to 

Stationary process as follows. 

∇𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1. If that is the case, we can then model the changes, make forecasts about the future 

values of these changes, and build models and create forecasts of the original nonstationary time 

series [19]. 

By applying one of (lnY, √𝑌 ) methods, the series is converted from nonstationary around variance 

to a stationary around variance. And by taking differences the series is converted form non stationary 

around mean to a stationary around mean. 

3.4 TESTS FOR NONSTATIONARITY  

There are objective tests that may be conducted to determine whether a series is nonstationary. The 

series could be nonstationary because of random walk, drift, or trend. In order to test for non-

stationary, the Augmented Dickey-Fuller (ADF) test is used where it test for a unit root in a time 

series sample. Given [20] 

                           

                            ∆𝑌𝑡 = 𝛽0 + 𝛼𝑡 + 𝛽1𝑌𝑡−1 + ∑ 𝜆𝑖∆𝑌𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖=1                              …………..(3.1) 

Where a random walk, 𝛼𝑡 = 𝛼𝑡−1 + 𝛼𝜀𝑡 is allowed. 

 

3.5 Box-Jenkins Models for Forecasting  

Box and Jenkins popularized a three-stage method to select an appropriate model to estimate and 

forecast a univariate time series.  

A measurement of the sample (ACF) and (PACF) to those of different theoretical (ARMA) 

processes may suggest several plausible models. Then, in the estimation stage, each of the tentative 

http://dx.doi.org/10.25098/5.2.17
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models is fit, and the various( ∅p and 𝜃q ) coefficients are examined. In this next stage, the goal is to 

select a stationary and parsimonious model with a good fit. Finally, the third stage involves diagnostic 

checking to ensure that the residuals from the estimated model mimic a white-noise process [10]. 

3.6 Autocorrelation Function (ACF)  

Weakly stationary time series, 𝑌𝑡, has finite variance with constant mean and variance over time t. 

Hence we can write 

𝐸(𝑌𝑡) = 𝜇𝑡 = 𝜇 

Similarly, the sample variance can be calculated using 

                                            𝜎̂2 =
1

𝑛
∑ (𝑌𝑡 − 𝑌̅)2𝑛

𝑡=1                                          …………..(3.2) 

Furthermore, their correlation is their covariances scaled for their standard deviations. 

                                      𝐶𝑜𝑟𝑟(𝑌𝑡, 𝑌𝑡∓𝑘) =
𝐶𝑜𝑣(𝑌𝑡,𝑌𝑡∓𝑘)

√𝜎𝑌𝑡
2

√𝜎𝑌𝑡∓𝑘
2

                                       ………..(3.3) 

We can find the covariance between observations of k lags apart from 𝐶𝑜𝑣(𝑌𝑡∓𝑘, 𝑌𝑡) =

𝐸[(𝑌𝑡∓𝑘 − 𝜇)(𝑌𝑡 − 𝜇)], also called autocovariance since we are dealing with the same data set. Once 

again, owing to stationarity we have 𝐶𝑜𝑣(𝑌1∓𝑘, 𝑌𝑡) = 𝐶𝑜𝑣(𝑌2∓𝑘, 𝑌𝑡), getting the autocovariance only 

a function of the time lag k. Therefore, we describe the autocovariance function as 

                                         𝛾(𝑘) = 𝐸[(𝑌𝑡∓𝑘 − 𝜇)(𝑌𝑡 − 𝜇)]                                 ………..(3.4) 

Note that the variance of the time series is γ(0).  

It is an important measurement to analyze time-series observations for correlation observations 

between the series at different times. We denoted by: ρk, ( k =0, ±1, ±2, … ),  which depend only on 

the lag of k. 

The ( ACF ) plays a very crucial role in the description of time series models as it summarizes as 

a function of ( k ) whereby correlated the observations that are ( k) lags apart are. Of course, we 

cannot know the actual value of ( ACF) in actual life, but instead, we will consider it from the data at 

hand working [5],[6].      

                                 𝛾(𝑘) =
1

𝑛
∑ (𝑌𝑡∓𝑘 − 𝑌̅𝑛−𝑘

𝑡=1 )(𝑌𝑡 − 𝑌̅)                     ……….(3.5) 

And 

                                                    𝜌̂(𝑘) =
𝛾̂(𝑘)

𝛾̂(0)
                                                         ……….(3.6) 
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Now, let us have (n) observations such that (𝑌1, 𝑌2, … , 𝑌𝑛 ), therefore the covariance matrix (Γ𝑛) is:  

 

∴ Γ𝑛 = 𝜎𝑦
2

[
 
 
 
 

1 𝜌1 𝜌2 ⋯ 𝜌𝑛−1

𝜌1 1 𝜌1 ⋯ 𝜌𝑛−2

𝜌2

⋮
𝜌𝑛−1

𝜌1

⋮
𝜌𝑛−2

1
⋮

𝜌𝑛−3

⋯
⋮
⋯

𝜌𝑛−3

⋮
1 ]

 
 
 
 

=  𝜎𝑦
2𝜌𝑛 

 

Or  𝜌𝑛 =
Γ𝑛

𝜎𝑦
2 =

Γ𝑛

Γ0
,   (𝑛 = 0,1,2, … ) 

In general, we have                  𝜌̂𝑘 =
𝛾̂𝑘

𝛾0
=

∑ (𝑌𝑡−𝑌̅)(𝑌𝑡∓𝑘−𝑌̅)𝑛−𝑘
𝑡=1

∑ (𝑌𝑡−𝑌̅)2𝑛
𝑡=1

                             ………..(3.7) 

3.7 Partial Autocorrelation Function (PACF) 

A Partial Autocorrelation Function is a tool that exploits the fact that, whereas an AR(𝑝) process 

has an autocorrelation function that is infinite in extent, the partial autocorrelations are zero beyond 

lag 𝑝.  

The partial autocorrelations can be described in terms of 𝑝 nonzero functions of the 

autocorrelations. Denote by (𝜙𝑘k ) the 𝑘′𝑡ℎ coefficient in an autoregressive representation of order ( 

𝑘), so that ( ∅𝑘𝑘) is the last coefficient [6]. 

                           𝜌𝑘 = ∅𝑘1𝜌𝑘−1 + ⋯+ ∅𝑘(𝑘−1)𝜌1 + ∅𝑘𝑘𝜌0                    ………..(3.8) 

which may be written as 

[
 
 
 
 

1 𝜌1 𝜌2 ⋯ 𝜌𝑘−1

𝜌1 1 𝜌1 ⋯ 𝜌𝑘−2

𝜌2

⋮
𝜌𝑘−1

𝜌1

⋮
𝜌𝑘−2

1
⋮

𝜌𝑘−3

⋯
⋮
⋯

𝜌𝑘−3

⋮
1 ]

 
 
 
 

[
 
 
 
 

 

∅𝑘1

∅𝑘2

∅𝑘3

⋮
∅𝑘𝑘

 

]
 
 
 
 

=

[
 
 
 
 

 

𝜌1

𝜌2
𝜌3

⋮
𝜌𝑘

 

]
 
 
 
 

 

Or 

Γ𝑘∅𝑘 = 𝜌𝑘 
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3.8 Autoregressive Model  

A stochastic model that can be very useful in representing specific practically occurring series is 

the autoregressive model. In this model, the popular value of the process is expressed as a finite, 

linear aggregate of previous values of the process and a random shock 𝑎𝑡. Let us denote the values of 

a process at equally spaced times [6]   𝑡, 𝑡 − 1, 𝑡 − 2, … by 𝑦𝑡, 𝑦𝑡−1, 𝑦𝑡−2, …  

                   𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝑎𝑡                     ………..(3.9) 

If we define an autoregressive operator of order 𝑝 in terms of the backward shift operator ( 𝐵 ) by 

                              𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 − ⋯− 𝜙𝑝𝐵𝑝                      ………..(3.10) 

3.9 Moving Average Model  

The autoregressive model expresses the variation ( 𝑦𝑡 ) of the process as a finite weighted sum of 

( 𝑝 ) previous deviations 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝 of the process, plus a random shock ( 𝑎𝑡) . Here we take 

( 𝑦𝑡) , linearly dependent on a finite number ( 𝑞 ) of previous ( 𝑎’s ). Thus, 

                          𝑦𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞                                    ………..(3.11) 

                          

Is called a moving average (MA) process of order ( 𝑞 ). The name ‘‘moving average’’ is somewhat 

misleading because the weights 1, −𝜃1, −𝜃2, … , −𝜃𝑞, which multiply the ( 𝑎’s), need not total unity 

nor need they be positive. 

If we define a moving average operator of order ( 𝑞 ) by 

   𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 − ⋯− 𝜃𝑞𝐵

𝑞    the polynomial function of order (q) in B                              

the moving average model may be written economically as 

                   𝑦𝑡 = 𝜃(𝐵)𝑎𝑡                                             

It contains ( 𝑞+2 ) unknown parameters ( 𝜇, 𝜃1, … , 𝜃𝑞, 𝜎𝑎
2 ), which in practice have to be estimated 

from the data [5],[6]. 

3.10 Mixed Autoregressive--Moving Average Models (ARMA)  

To achieve higher flexibility in fitting actual time series, it is sometimes advantageous to include 

both autoregressive also moving average terms in the model. This leads to the mixed autoregressive-

-moving average (ARMA) model:    

                      𝑦𝑡 = ∅1𝑦𝑡−1 + ⋯+ ∅𝑝𝑦𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞                ……….(3.12) 

Or        ∅(𝐵)𝑦𝑡 = 𝜃(𝐵)𝑎𝑡 

is called the mixed autoregressive--moving average process of order (𝑝, 𝑞), which we abbreviate 

as ARMA (𝑝, 𝑞). 
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Now writing 

𝑦𝑡 = ∅−1(𝐵)𝜃(𝐵)𝑎𝑡 

=
𝜃(𝐵)

∅(𝐵)
𝑎𝑡 =

1 − 𝜃1𝐵 − ⋯− 𝜃𝑞𝐵
𝑞

1 − ∅1𝐵 − ⋯− ∅𝑝𝐵𝑝
 

The model employs ( 𝑝 + 𝑞 + 2 ) unknown parameters 𝜇, 𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞, 𝜎2
𝑎, that are 

estimated from the data. This model may also be written in the form of the linear filter as 𝑦𝑡= 

𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑎𝑡, with 𝜓(𝐵) = 𝜙−1(𝐵)𝜃(𝐵) [5],[6]. 

3.11 Non-Seasonal Autoregressive Integrated Moving Average Model  

If we join differencing with autoregression and a moving average model, we obtain a non-seasonal 

ARIMA model. ARIMA is an acronym for Auto Regressive Integrated Moving Average (in this 

context, “integration” is the reverse of differencing). The ARIMA class of models is a crucial 

forecasting tool and is the basis of many fundamental ideas in time-series analysis. The full model 

can be written as [7],[14]:    

𝑦𝑡
′ = 𝑐 + ∅1𝑦𝑡−1

′ + ⋯+ ∅𝑝𝑦𝑡−𝑝
′ + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞                          ………..(3.13) 

Where 𝑦𝑡
′ is the differenced series (it may have been differenced more than once).  

                                              𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1                                                    ………..(3.14) 

Equation above can be written in backshift notation as : 

(1 − ∅1𝐵 − ⋯− ∅𝑝𝐵𝑝)(1 − 𝐵)𝑑𝑌𝑡 = 𝑐 + (1 + 𝜃1𝐵 + ⋯+ 𝜃𝑞𝐵
𝑞)                        …….(3.15) 

3.12 Seasonal Autoregressive Integrated Moving Average Model (SARIMA)  

A seasonal ARIMA model is formed by adding additional seasonal terms in the ARIMA models 

we have seen so far. It is written as follows: 

SARIMA (p, d, q) (P,D,Q)m 

(p, d, q) : non seasonal part of the model 

(P,D,Q)m : seasonal part of the model 

The seasonal ARIMA(p, d, q)(P, D, Q)s model can be most succinctly expressed applying the 

backward shift operator: 

Φ𝑃(𝐵𝑠)𝜙𝑝(𝐵)(1 − 𝐵𝑠)𝐷(1 − 𝐵)𝑑𝑌𝑡 = Θ𝑄(𝐵𝑠)𝜃𝑞(𝐵)𝑎𝑡                                ………..(3.16 ) 

where Φ𝑃 , 𝜙𝑝, Θ𝑄, and 𝜃𝑞 are polynomials of orders P, p, Q, and q, respectively. For stationarity 

to exist, both the regular and the seasonal autoregressive parameters need to lie within the bounds of 

stationarity. That is, 

−1 < Φ𝑃 , 𝜙𝑝 < +1 
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Autoregressive processes whose parameter estimates remain within these bounds are invertible 
[16],[20]. 

3.13 ARIMAX  

Autoregressive Integrated Moving Average with external variables (ARIMAX) model can be 

observed as a multiple regression model with one or more autoregressive (AR) terms and/or one or 

more moving average (MA) terms. 

The general ARIMAX models are as follows: 

𝑌𝑡 = 𝛽𝑋𝑡 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞.         ……..(3.17) 

The general form of ARIMAX (p, d, q) model for one explanatory variable has the following 

condensed form in lag operator notation 

𝑌𝑡 = 𝛽𝑋𝑡 + ∅(𝐵)−1𝜃(𝐵)𝑎𝑡                                                                              …………..(3.18) 

The model can also be written as: 

𝑌𝑡 =
𝛽

∅(𝐵)
𝑋𝑡 +

𝜃(𝐵)

∅(𝐵)
𝑎𝑡 

For more than one explanatory variable, the mathematical form of ARIMAX model has the form: 

𝑌𝑡 = 𝛽𝑋𝑡 + 𝛽1𝑋1,𝑡 + ⋯+ 𝛽𝑗𝑋𝑗,𝑡 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞                                                                                                            

…………(3.19) 

The first step in building an (ARIMAX) model consists of identifying a suitable (ARIMA) model for 

the endogenous variable [2],[15]. 

3.14 SARIMAX model  

 (SARIMAX) the structure is a popular regression model type for time series forecasting, which is 

linear in the parameters, enabling linear regression techniques for estimating those parameters. 

(SARIMAX) type models fall within the category of multivariate regression models. 

The (SARIMAX) model is a (SARIMA) model with external variables. 

 The general SARIMAX model equation: 

𝑌𝑡 = 𝛽𝑋𝑡 + 𝛽1𝑋1,𝑡 + ⋯+ 𝛽𝑗𝑋𝑗,𝑡 + (
𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)

𝜙𝑝(𝐵)Φ𝑃(𝐵𝑠)(1−𝐵)𝑑(1−𝐵𝑠)𝐷
𝑎𝑡)                       …..…….(3.20)   

where ∅1 , ∅2, …. ∅𝑝 , Φ1 , Φ2 ,…, Φ𝑃 , 𝜃1 , 𝜃2, …. 𝜃𝑞 and Θ1 , Θ2, …. Θ𝑄are the weights for the 

non-seasonal and seasonal autoregressive terms and moving average terms [3],[9].  
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4.1 Data Description: 

An SARMAX model is an SARIMA model with an exogenous variable, for this purpose, we 

should collected two part of data to analysis SARIMAX model forecasting: 

 Monthly ground water level data from a well was elevation (880m) above sea level and depth 

(58m), to analysis SARIMA model. We collected the data from the Directorate of 

Sulaymaniyah Water. 

 Monthly Rainfall data, was collected from the Sulaymaniyah Directorate of Meteorology 

and Seismology, climate variability to add exogenous variable to SARIMA model and 

build SARIMAX time series model 

The data during (7) years period contained 89 observation of data; beginning from (Jan 2013) 

through (May 2020) in the center of Sulaymaniyah city. the climate variability data and groundwater 

data are monthly through a duration time. 

4.2 Applications: 

This study can be done by using SARIMAX and SARIMA time series model. The first step build 

SARIMA model. 

 SARIMA model: 

The time series are display observations on the y-axis against equally spaced time intervals on the 

x-axis. They are used to evaluate patterns, knowledge of the general trend, and behaviors in data over 

time. The time series plot of monthly Groundwater level in Sulaymaniyah city is displayed in figure 

1 below: 

 

 

 

 

 

 

 

Figure 1: Monthly plot of time series Groundwater level in Sulaymaniyah city 
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Table 1: shows the results of ADF of the data of the time series of Groundwater level  

 

 

Table (1) explain that the p-value of the Dickey-Fuller test equals (0.1459)and it is greater than 

(0.05). This result indicates that the data of the time series of monthly Groundwater level is not 

random and demonstrates these results by examining the autocorrelation and partial            

autocorrelation functions as shown below.       

                                                                                                                      

 

Figure 2: Autocorrelations function for the monthly Groundwater level in Sulaymaniyah city 

 

Figure 3: Partial Autocorrelations function for the monthly Groundwater level in Sulaymaniyah 

city 
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All the above results and plots support that the time series data is not random at the level, which needs 

to be transformed to a random series. Therefore, we used many transformations, and we found that 

the most suitable transformation is by differencing the series. We note that the time series for the first 

differenced series in figure 4 indicates that the series is stationary. 

 

Figure 4:  Time series plot of the first difference of monthly Groundwater level in Sulaymaniyah 

city 

 

Table 2: shows the results of ADF of the data of the time series of Groundwater level  

 

Table (1) explain that the p-value of the Dickey-Fuller test equals (0.0006) and it is less than (0.05). 

This result indicates that the data of the time series of monthly Groundwater level is random. 

 

Figure 5 : Autocorrelation Function for the first – differenced series of the monthly Groundwater 

level in Sulaymaniyah city 
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Figure 6 : Partial Autocorrelation Function for the first – differenced series of the monthly 

Groundwater level in Sulaymaniyah city 

       The results above demonstrate the success of differencing the time series data of the monthly 

Groundwater level at the Directorate of Sulaymaniyah Water. Thus, the series becomes stationary. 

4.3 Model Identification 

        We use the ACF and PACF plots to identify the order of the ARIMA model. The plots of ACF 

and PACF for the first differencing order of log for the monthly Groundwater level are shown in 

Figure 1. For the first difference log series and seasonal order difference, the ACF cut-off is lag 1 and 

PACF cut-off is lag 1. 

Table 3 : SARIMA Models Criteria for the monthly Groundwater level  

Model AIC 

ARIMA(0,1,0)x(1,0,1)12 1.94015 

ARIMA(1,1,0)x(1,0,1)12 1.9674 

ARIMA(0,1,1)x(1,0,1)12 1.96832 

ARIMA(1,1,1)x(1,0,1)12 1.99995 

ARIMA(1,0,0)x(0,1,1)12 2.06346 

 

      The performance of seasonal-ARIMA models is shown in Table 3. We found that ARIMA (0,1,0) 

(1,0,1)12 has the smallest value of AIC (1.94015) among all the other models that shows the best 

performance for a prediction that can be obtained for the monthly groundwater level at the Directorate 

of Sulaymaniyah Water. 

4.4 Parameters Estimation: 

Since we concluded in the previous section that the SARIMA (0,1,0)x(1,0,1)12  model is the best 

model with the smallest value of AIC criteria, the parameters had been estimated using maximum 

likelihood it is the best and most appropriate method of estimation. The results of the parameter 

estimation of the model are shown in table (4) below. 
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Table 4 : Parameter estimation of SARIMA (0,1,0)x(1,0,1)12 Model Estimate model coefficients 

Parameter Estimate Stand. Error T P-value 

SAR(1) 1.2764 0.0464593 27.4735 0.000000 

SMA(1) 1.23016 0.0685782 17.9381 0.000000 
 

It is shown in table (4) that the p-value for the parameters SAR (1) and SMA (1) coefficients are 

less than α = 0.05. As it is show for this model, the AIC criteria are the smallest values among the 

other models. Thus, the final model is SARIMA (0,1,0) x (1,0,1)12 

4.5 Forecasting 

        After getting the final model SARIMA (0,1,0) x (1,0,1)12 of the data of the monthly ground 

water level at the Directorate of Sulaymaniyah Water that has been expressed above, the researcher 

used it for forecasting future ground water level.  

 

Figure 7: Plot of the data and the forecasts with 95% confidence interval are represented 

Figure 7 shows the result that the behavior of forecasted values is the same as original series of 

ground water level at the Directorate of Sulaymaniyah Water. The result of the forecasted values in 

table (3) for the year 2020-2021 for 12 months are all between the upper and lower boundaries of the 

95% confidence intervals. This confirms that the forecasting is very efficient. 
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Table 5: Forecast future value with the lower and upper 95% confidence interval 

Period Forecast Lower 95.0% Limit Upper 95.0% Limit 

Jun-2020 25.8687 20.6074 31.1299 

Jul-2020 30.2368 22.7963 37.6773 

Aug-2020 36.4517 27.339 45.5644 

Sep-2020 40.0459 29.5234 50.5683 

Oct-2020 46.085 34.3205 57.8494 

Nov-2020 46.0992 33.2119 58.9865 

Dec-2020 39.7645 25.8446 53.6844 

Jan-2021 29.7996 14.9186 44.6806 

Feb-2021 24.9871 9.20346 40.7708 

Mar-2021 14.7788 -1.85864 31.4163 

Apr-2021 14.2539 -3.19558 31.7035 

May-2021 17.7817 -0.443729 36.0071 

 

Table 3 shows that the quantities of monthly ground water level at the Directorate of Sulaymaniyah 

Water in 2020 – 2021 for 12 months have been forecasted. It is also shown from these results that the 

forecasted values are all between the upper and lower boundaries of the 95% confidence intervals. 

This supports that the forecasting is efficient. 

 SARIMAX model 

After getting the final model SARIMA (0,1,0) x (1,0,1)12 of the data of the monthly ground water 

level at the Directorate of Sulaymaniyah Water we should consider the influencing external factors 

such as, (rainfall) is displayed in figure 8 below 
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Figure 8: The monthly average rainfall(mm) recorded 

 

Table 6: SARIMAX Results 

 

Table 7: fitted SARIMAX models 

 

Table (4) and (5) shows Rainfall an important factor in effecting the groundwater level while, 

coefficient of Rainfall is positive (0.0059) are significant at %5 level of significant. This showed    

SARIMAX (0,1,0) x (1,0,1)12 with AIC (456.744) is a best model and all of coefficient are 

significant at %5 level of significant.  
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5. Conclusion and Recommendations  

5.1 Conclusion 

This research studies the relationship between the climate index and the groundwater level of the 

Sulaymaniyah city, in order to forecast the groundwater level in the studied area by using Seasonal 

Autoregressive Integrated Moving Average (SARIMA) and Seasonal Autoregressive Integrated 

Moving Average with Explanatory (SARIMAX). Add climate indices (rainfall) were used, along with 

the groundwater level data from station during the period 2013–2020 to develop the forecast model 

and verify it with the data of 2021. the first step before built the suitable model is to check stationary 

for data by using Augmented Dicky-Fuller Test (ADF Test). After that Identification of AR and MA 

terms requires the model builder to examine the autocorrelation coefficient function (ACF) and the 

partial autocorrelation coefficient function (PACF). The possible model was then selected using AIC 

statistics. Diagnostic Checking was done to consider the white noise characteristic of estimated 

residuals by using the statistics of Box and Ljung (Q-statistic). The simulated results of the monthly 

groundwater level in 2021 of the wells have a confidence interval of around 95%.  To conclude, the 

results show that there is a relationship between the groundwater level and the climate index. while, 

coefficient of SARIMAX (0,1,0) x (1,0,1)12 are significant at %5 level of significant.  

5.2 Recommendations: 

can be used this model to develop procedures for forecasting groundwater levels, which can then 

be used to better manage the groundwater resources in my country. 
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