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Abstract:

Groundwater is one of the common essential water resources for billions of people, especially for
many developing countries in Asia. Indeed, climate variation is one factor in the quantity and quality
of groundwater resources in the world. The study used time-series data, it can be used to understand
the past as well as predict the future.

Additionally, were taken climate index (Rainfall) to show and understand ground water level is
affected by external factors and show the relationship between them. For this purpose, using
groundwater level data during (7) years period contained 89 observation of data; beginning from (Jan
2013) through (May 2020) in the center of Sulaymaniyah city. Additionally, the climate variability
data and groundwater data are monthly through a duration time.

The objective of this study Fitting the suitable Seasonal Autoregressive Integrated Moving
Average (SARIMA) and Seasonal Autoregressive Integrated Moving Average with Explanatory
variable (SARIMAX) model to studies the relationship between the climate variation and
groundwater level. Finally, after added climate variability (Rainfall) to the SARIMA model, study
showed the ground water level is affected by external factors. while, coefficient of external factor is
positive and significant at %5 level of significant. This showed ARIMAX (0,1,0) x (1,0,1)12 with
AIC (456.744) is a best model.

Keywords: SARIMA, SARIMAX, groundwater level, climate variability.
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1. Introduction:

Gound water is an almost universal source of generally high-quality freshwater. These
characteristics promote its overall development, scaled and localized to demand, obviating substantial
infrastructure needs. Globally, groundwater is the cause of one-third of all freshwater withdrawals,
supplying an estimated 36%, 42%, and 27% of the water used for domestic, agricultural, and
industrial purposes respectively. In many environments, natural groundwater discharges sustain
baseflow to rivers, lakes, and wetlands during low or no rainfall periods. In addition, the statistical
tools could be analyzed these problems, especially when time is a significant factor in them. Time
series analysis is one of the powerful statistical tools used to forecast the groundwater level and study
the relationship between climate variation and groundwater level.

1.1 Objective of the Study

Fitting the suitable Seasonal Autoregressive Integrated Moving Average with Explanatory
(SARIMAX) model to studies the relationship between the climate variation and groundwater level
and compare two methods. These are SARIMA and SARIMAX to choose high accuracy of the
forecasting model. can be used this model to develop procedures for forecasting groundwater levels.
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2. Literature Review

(Arunraj, N. S., et al., 2016) In the study, develop a Seasonal Autoregressive Integrated Moving
Average with external variables (SARIMAX) model which tries to account for all the effects due to
the demand influencing factors, to forecast the daily sales of perishable foods in a retail store.
Concerning performance measures, it is found that the proposed SARIMAX model improves the
traditional Seasonal Autoregressive Integrated Moving Average (SARIMA) model. Bl

(Chiu, L. Y., etal., 2019) This study aims to improve a model for predicting the possible increase
in the whitefly population in greenhouses applying autoregressive integrated moving average
(ARIMA) and ARIMA with exogenous variables (ARIMAX). The proposed ARIMAX model can be
used to assist farmers in decision-making for pesticide application scheduling. This research proves
that the best model for predicting the incidence of whiteflies was ARIMAX, with temperature and
humidity included as the exogenous factors. [®!

(Farih, L. N., et al., 2019) This thesis aims to estimate the total departure of ship customers in the
main port of Makassar working the ARIMAX method with the effects of calendar variations.
Moreover, the ARIMAX method is a system that can be used when there are exogenous variables,
where in this example, the exogenous variable is in the form of a variable dummy which is the Eid
holidays. Finally, these forecasting outcomes show that the ARIMAX (2,1,0) (0,0,1)12 method has a
relatively small accuracy with the MAPE value of 14.08%. [t

(Ling, A. S. C., etal., 2019) This study proposes to develop an Autoregressive Integrated Moving
Average with external variables (ARIMAX) model, which tries to account for the effects due to the
climatic influencing factors, to forecast the weekly cocoa black pod disease incidence. A study found
that The ARIMAX models performed well with lower error as compared to the ARIMA models. Key
findings indicate that maximum temperature and relative humidity have a significant correlation with
black pod incidence and are suggested as indicators in forecasting the cocoa black pod incidence. %]

(Tadesse, K. B., & Dinka, M. O., 2017) In this study, the Waterval River flood was forecasted by
the SARIMA model. Monthly flows from 1960 to 2016 were done for modeling and forecasting.
Based on seasonally differenced correlogram characteristics, many SARIMA models were evaluated.
Their parameters were optimized, and a diagnostic checkup of estimates was made applying white
noise and heteroscedasticity tests. Lastly, based on minimum Akaike Information (Al) and Hannan—
Quinn (HQ) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 model chosen for Waterval River flow
forecasting. [*®]

(Gikungu, S. W., et al., 2015) In this research, Seasonal Autoregressive Integrated Moving
Average (SARIMA) model is developed to forecast Kenya's inflation measure using quarterly data
from 1981 to 2013 obtained from KNBS. SARIMA (0,1,0) (0,0,1)4 was identified as the most suitable
model. The predictive ability tests RMSE=0.2871, MAPE=3.9456, and MAE= 0.2369 showed that
the model was fitting for forecasting the inflation rate in Kenya.['?]

(Cools, M. et al., 2009) In this study, daily traffic counts are explained and forecasted by different
modeling philosophies, namely the ARIMAX and SARIMA(X) modeling approaches. Particular

emphasis is put on investigating the seasonality in the daily traffic data and on the identification and
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comparison of holiday effects at different site locations. Finally, results revealed that the ARIMAX
and SARIMAX modeling approaches are practical frameworks for identifying and quantifying
possible influencing effects..l]

3. Materials and Methods
3.1 Time series analysis
Time series analysis is done for mainly two reasons:

1. Understanding the behavior of the process by studying its records to model and identify the
main parameters that influence the time series and identify its components.

2. Forecasting the future values of the series using an adequate model that has been trained on
past values.

The initial action in the analysis of each time series is to plot the data. If there are apparent
discontinuities in the series, such as an immediate change of level, it may be advisable to investigate
the series by first breaking it into homogeneous segments. If there are external observations, they
should be studied carefully to check whether there is any justification for discarding them (for
instance, if an observation has been recorded of any other process by blunder) (3171,

3.1.1 time series

A time series is a collection of measures introduced sequentially into time. It is mathematically
defined as a collection of vectors in which the index parameter (T) is the time-space or a set of
observations (indexed by time). The variable treat as a random variable.

These observations can be as different as numbers, labels, colors, and many others. Furthermore,
these measurements may be made continuously within time or be taken at a discrete set of time
duration. By convention, these two kinds of series are named continuous and discrete-time series,
respectively, even though the regular variable may be discrete or continuous in each case 71,

3.1.2 components of a time series

The signal in time series data usually is divided into four components: Trend, seasonal, cyclical,
and irregular. Each of these components describes a different mechanism by which past values of a
time series may be related to the present value (I,

discuss each of these components:

1. Trend (T)

2. Seasonal Variation (S)
3. Cyclical Variation (C)
4. lrregular Variation (I)
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3.1.3 Attribute of Time Series
e Stationary Time Series

The basis for any time series analysis is stationary time series. It is essential for stationary time
series that we can develop models and forecasts. However, it is the nonstationary time series that is
most interesting in many applications, especially in business and economics. Similarly, when
processes are left alone in industrial applications, they are expected to show nonstationary behavior
simply following the second law of thermodynamics. Therefore, while in real-life applications, it
happens only under specific situations, the stationary time series play a vital role as the foundation
for time series analysis .

e Non-Stationary Time Series

They could have nonconstant means |, time-varying second such as nonconstant variance a2, or
both properties.

Many applications with nonstationary data use different methods (d) from Non-Stationary to
Stationary process as follows.

VY, =Y, — Y,_;. If that is the case, we can then model the changes, make forecasts about the future

values of these changes, and build models and create forecasts of the original nonstationary time
ies [19]

series 171,

By applying one of (InY, v/Y ) methods, the series is converted from nonstationary around variance
to a stationary around variance. And by taking differences the series is converted form non stationary
around mean to a stationary around mean.

3.4 TESTS FOR NONSTATIONARITY

There are objective tests that may be conducted to determine whether a series is nonstationary. The
series could be nonstationary because of random walk, drift, or trend. In order to test for non-
stationary, the Augmented Dickey-Fuller (ADF) test is used where it test for a unit root in a time
series sample. Given 2%

AYy =B+ ar + f1Yq + Zle MDY+ (3.1)

Where a random walk, a; = a;_; + as; is allowed.

3.5 Box-Jenkins Models for Forecasting

Box and Jenkins popularized a three-stage method to select an appropriate model to estimate and
forecast a univariate time series.

A measurement of the sample (ACF) and (PACF) to those of different theoretical (ARMA)
processes may suggest several plausible models. Then, in the estimation stage, each of the tentative
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models is fit, and the various( @, and 84 ) coefficients are examined. In this next stage, the goal is to
select a stationary and parsimonious model with a good fit. Finally, the third stage involves diagnostic
checking to ensure that the residuals from the estimated model mimic a white-noise process 1%,

3.6 Autocorrelation Function (ACF)

Weakly stationary time series, Y;, has finite variance with constant mean and variance over time t.
Hence we can write

E(Yt) =l = U

Similarly, the sample variance can be calculated using
~ 1 5z
0-2 = ; ?=1(Yt - Y)Z .............. (3.2)

Furthermore, their correlation is their covariances scaled for their standard deviations.
Cov(Y:,Y3g)

===
NN ="

We can find the covariance between observations of k lags apart from Cov(Yizy,Y:) =
E[(Yezx — n)(Y; — )], also called autocovariance since we are dealing with the same data set. Once
again, owing to stationarity we have Cov(Y;zy, Y;) = Cov(Y,3, Y;), getting the autocovariance only
a function of the time lag k. Therefore, we describe the autocovariance function as

yk) =E[(Yeze —WYe—w] (3.4)

Note that the variance of the time series is (0).

Corr(Yy, Yezx) =

It is an important measurement to analyze time-series observations for correlation observations
between the series at different times. We denoted by: py, (k =0, +1, +2, ... ), which depend only on
the lag of k.

The ( ACF ) plays a very crucial role in the description of time series models as it summarizes as
a function of ( k ) whereby correlated the observations that are ( k) lags apart are. Of course, we
cannot know the actual value of ( ACF) in actual life, but instead, we will consider it from the data at
hand working [5}6],

Pl =200V - D -1 (3.5)
And
501 = YK
ply=5 e (3.6)
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Now, let us have (n) observations such that (v;,Y5, ..., Y;, ), therefore the covariance matrix (I;,) is:

1 p. P2 ™ Pnoa
P1 1 P1 " Pn-2
~ T, =0y P2 P1 1 - ppz|= ojypn
Pn-1 Pn-2 Pp-3 1
r, Tp
Or Pn = O'_}Z, = F—o, (Tl =0,1,2, )
= n-key _v .V
In general, we have by = :’/—k = 2f=1§? (‘;)(y}_f;z" Do (3.7)
0 t=1\Ut™

3.7 Partial Autocorrelation Function (PACF)

A Partial Autocorrelation Function is a tool that exploits the fact that, whereas an AR(p) process
has an autocorrelation function that is infinite in extent, the partial autocorrelations are zero beyond

lag p.

The partial autocorrelations can be described in terms of p nonzero functions of the
autocorrelations. Denote by (¢xk ) the k'th coefficient in an autoregressive representation of order (
k), so that ( @) is the last coefficient (],

Pr = Pk1Pk—-1+ =+ Pre—1)P1 + BP0 e (3.8)

which may be written as

1 p1 P2 Pr-1 [ Dra P1
P1 1 pP1 - Pr-2 ®k2 [pz-l
P2 P1 1 pr-s|| Dis =[p‘3‘
pk—l pk—Z pk_3 v 1 Qkk pk
Or
[Py = pr
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3.8 Autoregressive Model

A stochastic model that can be very useful in representing specific practically occurring series is
the autoregressive model. In this model, the popular value of the process is expressed as a finite,
linear aggregate of previous values of the process and a random shock a;. Let us denote the values of
a process at equally spaced times® ¢, t —1,t—2, ... bY V¢, Vi1, Ve—2, oo

Ve =P1Ve-1 t G2Veo H o F Ppyep a0 (3.9
If we define an autoregressive operator of order p in terms of the backward shift operator ( B ) by
$(B)=1—¢,B—¢p,B>—--—¢p,B? ... (3.10)

3.9 Moving Average Model

The autoregressive model expresses the variation ( y, ) of the process as a finite weighted sum of
(p ) previous deviations y;_q, ¥z, ..., Y¢t—p Of the process, plus a random shock ( a,) . Here we take
(y¢) , linearly dependent on a finite number ( g ) of previous (a’s ). Thus,

yt = at - Blat_l - Bzat_z — Qqat_q ........... (311)

Is called a moving average (MA) process of order ( g ). The name ‘‘moving average’’ is somewhat
misleading because the weights 1, =01, —62, ... , =64, which multiply the ( a’s), need not total unity
nor need they be positive.

If we define a moving average operator of order ( g ) by
6(B) =1-6,B—6,B>—---—6,B? the polynomial function of order (q) in B
the moving average model may be written economically as
ye =0(B)a;

It contains ( g+2 ) unknown parameters ( y, 1, ... , 84, a2 ), which in practice have to be estimated
from the data M1,

3.10 Mixed Autoregressive--Moving Average Models (ARMA)

To achieve higher flexibility in fitting actual time series, it is sometimes advantageous to include
both autoregressive also moving average terms in the model. This leads to the mixed autoregressive-
-moving average (ARMA) model:

Ve = Q)Iyt—l + -+ prt—p + a; — Hlat_l — e = ant—q .......... (312)
Or ?(B)y; = 6(B)a;

is called the mixed autoregressive--moving average process of order (p, q), which we abbreviate
as ARMA (p, q).

DOI: http://dx.doi.org/10.25098/5.2.17

37

@G)@@ Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/5.2.17

The Scientific Journal of Cihan University — Sulaimaniya PP: 30-48
Volume (5), Issue (2), December 2021
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Now writing
ye = 071(B)8(B)a,
0(B) 1-6,B—--—0,B1
= a,r =
oB) * 1-@¢,B—-—0,B?
The model employs ( p + g + 2 ) unknown parameters u, @1, ... , ¢p, 61, ... , 0q, 0%, that are

estimated from the data. This model may also be written in the form of the linear filter as y,=
¢ *(B)A(B)a: = Y(B)a:, with p(B) = ¢ X(B)6(B) M,

3.11 Non-Seasonal Autoregressive Integrated Moving Average Model

If we join differencing with autoregression and a moving average model, we obtain a non-seasonal
ARIMA model. ARIMA is an acronym for Auto Regressive Integrated Moving Average (in this
context, “integration” is the reverse of differencing). The ARIMA class of models is a crucial
forecasting tool and is the basis of many fundamental ideas in time-series analysis. The full model
can be written as [M141:

yi=c+ @1yt -+ 0y, tar—60ia, 1 ——6ga,q (3.13)
Where | is the differenced series (it may have been differenced more than once).

Ye=Ye—Yeer (3.14)
Equation above can be written in backshift notation as :
(1-¢,B—-—0,B°)(1-B)*Y,=c+1+6,B+-+6,B9) ... (3.15)
3.12 Seasonal Autoregressive Integrated Moving Average Model (SARIMA)

A seasonal ARIMA model is formed by adding additional seasonal terms in the ARIMA models
we have seen so far. It is written as follows:

SARIMA (p, d, q) (P,D,Q)m
(p, d, ) : non seasonal part of the model
(P,D,Q)m : seasonal part of the model

The seasonal ARIMA(p, d, q)(P, D, Q)s model can be most succinctly expressed applying the
backward shift operator:

®p(BS)pp(B)(1 — BSP(1 — B)YY, = 0o(B5)0,(B)ay oo (3.16)

where ®p , ¢, 04, and 6, are polynomials of orders P, p, Q, and g, respectively. For stationarity

to exist, both the regular and the seasonal autoregressive parameters need to lie within the bounds of
stationarity. That is,

—1<®p, ¢, < +1
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Autoregressive processes whose parameter estimates remain within these bounds are invertible
[16],[20]

3.13 ARIMAX

Autoregressive Integrated Moving Average with external variables (ARIMAX) model can be
observed as a multiple regression model with one or more autoregressive (AR) terms and/or one or
more moving average (MA) terms.

The general ARIMAX models are as follows:
Yt - ﬁXt + ®1Yt—1 + ®2Yt—2 + + @th_p + at - Qlat_l — ant—CI' ........ (317)

The general form of ARIMAX (p, d, q) model for one explanatory variable has the following
condensed form in lag operator notation

Y, =X, +0(B)0Ba (3.18)
The model can also be written as:

B 6(B)

Yt =th +W3)at

For more than one explanatory variable, the mathematical form of ARIMAX model has the form:

Yo =BXe +BriXoe + -+ BiXje + 01V + BV ++ 0¥ p +ar — 01001 — - — 6pa¢4

The first step in building an (ARIMAX) model consists of identifying a suitable (ARIMA) model for
the endogenous variable (2151,

3.14 SARIMAX model

(SARIMAX) the structure is a popular regression model type for time series forecasting, which is
linear in the parameters, enabling linear regression techniques for estimating those parameters.
(SARIMAX) type models fall within the category of multivariate regression models.

The (SARIMAX) model is a (SARIMA) model with external variables.
The general SARIMAX model equation:

04(B)®q(BS)
»(B)®p(B5)(1-B)4(1-B%)P

Yo = BX; + B1Xve + -+ BiXje + (¢ ar) e (3.20)

where @, , @,, .... 0, , @1, P, ,..., Pp , 0;,60,,.... 0, and O, , O, .... Oyare the weights for the
non-seasonal and seasonal autoregressive terms and moving average terms LI,
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4.1 Data Description:

An SARMAX model is an SARIMA model with an exogenous variable, for this purpose, we
should collected two part of data to analysis SARIMAX model forecasting:

e Monthly ground water level data from a well was elevation (880m) above sea level and depth
(58m), to analysis SARIMA model. We collected the data from the Directorate of
Sulaymaniyah Water.

e Monthly Rainfall data, was collected from the Sulaymaniyah Directorate of Meteorology
and Seismology, climate variability to add exogenous variable to SARIMA model and
build SARIMAX time series model

The data during (7) years period contained 89 observation of data; beginning from (Jan 2013)
through (May 2020) in the center of Sulaymaniyah city. the climate variability data and groundwater
data are monthly through a duration time.

4.2 Applications:

This study can be done by using SARIMAX and SARIMA time series model. The first step build
SARIMA model.

e SARIMA model:

The time series are display observations on the y-axis against equally spaced time intervals on the
x-axis. They are used to evaluate patterns, knowledge of the general trend, and behaviors in data over
time. The time series plot of monthly Groundwater level in Sulaymaniyah city is displayed in figure
1 below:

Time Series Plot for Groundwater level at station 1
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Figure 1: Monthly plot of time series Groundwater level in Sulaymaniyah city
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Table 1: shows the results of ADF of the data of the time series of Groundwater level

-Statistic Prob.*

Augmented Dickey-Fuller test statistic -2.972437 0.1459
Test critical values: 1% level -4 065702

5% level -3.461686

10% level -3.157121

Table (1) explain that the p-value of the Dickey-Fuller test equals (0.1459)and it is greater than
(0.05). This result indicates that the data of the time series of monthly Groundwater level is not
random and demonstrates these results by examining the autocorrelation and partial
autocorrelation functions as shown below.

Estimated Autocorrelations for Groundwater level at station 1
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Figure 2: Autocorrelations function for the monthly Groundwater level in Sulaymaniyah city

Estimated Partial Autocorrelations for Groundwater level at station 1
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Figure 3: Partial Autocorrelations function for the monthly Groundwater level in Sulaymaniyah
city
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All the above results and plots support that the time series data is not random at the level, which needs
to be transformed to a random series. Therefore, we used many transformations, and we found that
the most suitable transformation is by differencing the series. We note that the time series for the first
differenced series in figure 4 indicates that the series is stationary.

Time Series Plot for adjusted Groundwater level at station 1
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Figure 4: Time series plot of the first difference of monthly Groundwater level in Sulaymaniyah
city

Table 2: shows the results of ADF of the data of the time series of Groundwater level

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4 943665 0.0006
Test critical values: 1% level -4 066981
5% level -3.462292
10% level -3.1587475

Table (1) explain that the p-value of the Dickey-Fuller test equals (0.0006) and it is less than (0.05).
This result indicates that the data of the time series of monthly Groundwater level is random.

Estimated Autocorrelations for adjusted Groundwater level at station 1
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Figure 5 : Autocorrelation Function for the first — differenced series of the monthly Groundwater
level in Sulaymaniyah city
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Estimated Partial Autocorrelations for adjusted Groundwater level at station 1
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Figure 6 : Partial Autocorrelation Function for the first — differenced series of the monthly
Groundwater level in Sulaymaniyah city

The results above demonstrate the success of differencing the time series data of the monthly
Groundwater level at the Directorate of Sulaymaniyah Water. Thus, the series becomes stationary.

4.3 Model Identification

We use the ACF and PACEF plots to identify the order of the ARIMA model. The plots of ACF
and PACF for the first differencing order of log for the monthly Groundwater level are shown in
Figure 1. For the first difference log series and seasonal order difference, the ACF cut-off is lag 1 and
PACEF cut-off is lag 1.

Table 3 : SARIMA Models Criteria for the monthly Groundwater level

Model AlC
ARIMA(0,1,0)x(1,0,1)12 1.94015
ARIMA(L,1,0)x(1,0,1)12 1.9674
ARIMA(0,1,1)x(1,0,1)12 1.96832
ARIMA(L,1,1)x(1,0,1)12 1.99995
ARIMA(1,0,0)x(0,1,1)12 2.06346

The performance of seasonal-ARIMA models is shown in Table 3. We found that ARIMA (0,1,0)
(1,0,1)12 has the smallest value of AIC (1.94015) among all the other models that shows the best
performance for a prediction that can be obtained for the monthly groundwater level at the Directorate
of Sulaymaniyah Water.

4.4 Parameters Estimation:

Since we concluded in the previous section that the SARIMA (0,1,0)x(1,0,1)12 model is the best
model with the smallest value of AIC criteria, the parameters had been estimated using maximum
likelihood it is the best and most appropriate method of estimation. The results of the parameter
estimation of the model are shown in table (4) below.
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Table 4 : Parameter estimation of SARIMA (0,1,0)x(1,0,1)12 Model Estimate model coefficients

Parameter Estimate Stand. Error T P-value
SAR(1) 1.2764 0.0464593 27.4735 0.000000
SMA(1) 1.23016 0.0685782 17.9381 0.000000

It is shown in table (4) that the p-value for the parameters SAR (1) and SMA (1) coefficients are
less than o = 0.05. As it is show for this model, the AIC criteria are the smallest values among the
other models. Thus, the final model is SARIMA (0,1,0) x (1,0,1)12

4.5 Forecasting

After getting the final model SARIMA (0,1,0) x (1,0,1)12 of the data of the monthly ground
water level at the Directorate of Sulaymaniyah Water that has been expressed above, the researcher
used it for forecasting future ground water level.

Time Sequence Plot for Groundwater level at station 1
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Figure 7: Plot of the data and the forecasts with 95% confidence interval are represented

Figure 7 shows the result that the behavior of forecasted values is the same as original series of
ground water level at the Directorate of Sulaymaniyah Water. The result of the forecasted values in
table (3) for the year 2020-2021 for 12 months are all between the upper and lower boundaries of the
95% confidence intervals. This confirms that the forecasting is very efficient.
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Table 5: Forecast future value with the lower and upper 95% confidence interval

Period Forecast Lower 95.0% Limit Upper 95.0% Limit
Jun-2020 25.8687 20.6074 31.1299
Jul-2020 30.2368 22.7963 37.6773
Aug-2020 [36.4517 27.339 45.5644
Sep-2020 40.0459 29.5234 50.5683
Oct-2020 46.085 34.3205 57.8494
Nov-2020 |46.0992 33.2119 58.9865
Dec-2020  |39.7645 25.8446 53.6844
Jan-2021 29.7996 14.9186 44.6806
Feb-2021 24.9871 9.20346 40.7708
Mar-2021 |14.7788 -1.85864 31.4163
Apr-2021 14.2539 -3.19558 31.7035
May-2021 |17.7817 -0.443729 36.0071

Table 3 shows that the quantities of monthly ground water level at the Directorate of Sulaymaniyah
Water in 2020 — 2021 for 12 months have been forecasted. It is also shown from these results that the
forecasted values are all between the upper and lower boundaries of the 95% confidence intervals.
This supports that the forecasting is efficient.

e SARIMAX model

After getting the final model SARIMA (0,1,0) x (1,0,1)12 of the data of the monthly ground water
level at the Directorate of Sulaymaniyah Water we should consider the influencing external factors
such as, (rainfall) is displayed in figure 8 below
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Figure 8: The monthly average rainfall(mm) recorded

Table 6: SARIMAX Results

SARIMAX Results
Dep. Variable: Y No. Observations: 29
Model: SARIMAXD, 1, 01, 0,11, 12) Log Likelihood -224 372
Date: Sat, 26 Jun 2021 AIC 456.744
Time: 15:29:02 BIC 466.654
Sample: 0 HQIC 460.737

Table 7: fitted SARIMAX models

coef std err Fd P=|z|

X1 0.00549 0.00z2 2.461 0.014
ar.5.L12 0.9159 0.076 12,116 0.000
ma.S.L12 -0.5605 0.158 -3.546 0.000
sigmaz2 8.6493 1.344 6.437 0.000

Table (4) and (5) shows Rainfall an important factor in effecting the groundwater level while,
coefficient of Rainfall is positive (0.0059) are significant at %5 level of significant. This showed

SARIMAX (0,1,0) x (1,0,1)12 with AIC (456.744) is a best model and all of coefficient are
significant at %5 level of significant.
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5. Conclusion and Recommendations
5.1 Conclusion

This research studies the relationship between the climate index and the groundwater level of the
Sulaymaniyah city, in order to forecast the groundwater level in the studied area by using Seasonal
Autoregressive Integrated Moving Average (SARIMA) and Seasonal Autoregressive Integrated
Moving Average with Explanatory (SARIMAX). Add climate indices (rainfall) were used, along with
the groundwater level data from station during the period 2013—2020 to develop the forecast model
and verify it with the data of 2021. the first step before built the suitable model is to check stationary
for data by using Augmented Dicky-Fuller Test (ADF Test). After that Identification of AR and MA
terms requires the model builder to examine the autocorrelation coefficient function (ACF) and the
partial autocorrelation coefficient function (PACF). The possible model was then selected using AIC
statistics. Diagnostic Checking was done to consider the white noise characteristic of estimated
residuals by using the statistics of Box and Ljung (Q-statistic). The simulated results of the monthly
groundwater level in 2021 of the wells have a confidence interval of around 95%. To conclude, the
results show that there is a relationship between the groundwater level and the climate index. while,
coefficient of SARIMAX (0,1,0) x (1,0,1)12 are significant at %5 level of significant.

5.2 Recommendations:

can be used this model to develop procedures for forecasting groundwater levels, which can then
be used to better manage the groundwater resources in my country.
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