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Abstract: 

COVID-19 is a severe viral infection that poses a serious threat on humanity as a whole; it has 

affected almost all aspects of life. To overcome the threat, experts use different methods to detect the 

infection of COVID-19. One of the main techniques is the use of medical images which provides 

experts with valuable information to accurately detect the infection. Many researches have 

concentrated on automation of COVID-19 classification using artificial intelligence techniques on 

chest X-ray (CXR) images. This paper concentrated on designing and developing an intelligent 

pipeline for the COVID-19 identification by fusing the features extracted using Curvelet Transform 

(CT), Gabor Wavelet Transform (GWT), and Local Gradient Increasing Pattern (LGIP), then to 

classify the CXR images, the images were fed into four machine learning classifiers, Discriminant 

Analysis (DISC), Ensemble, Random Forest (RF), and Support Vector Machine (SVM). To verify 

the validity of the proposed model performance, a total of 7232 CXR healthy and COVID-19 images 

were used which were obtained from a COVID-19 Radiography database.  Experimental results 

indicated that the proposed feature fusion technique assured a satisfactory performance in terms of 

identifying COVID-19 compared to other state-of-the-art works with overall testing accuracy of 

96.18%, precision of 95.46%, sensitivity of 96.98%, and F1-score of 96.21% using SVM classifier. 

Keywords: COVID-19 diagnosis, Chest X-rays, Feature Extraction, Machine learning. 

 

 الملخص:
 

الصور الطبية يزود الخبراء بمعلومات هي عدوى فيروسية شديدة و تشكل تهديدا لصحة و حياة الأنسان. استخدام  ١٩-كوفيد

اوتوماتيكيا. هذا  ١٩-مفيدة. بحوث عديدة ركزت على صور اشعة الصدر بأستخدام تقنيات الذكاء الصناعي لتحديد الأصابة بكوفيد

و  Curvelet Transform (CT)بدمج الميزات المستخلصة من  ١٩-البحث صممت و طورت نظام ذكي لتحديد الأصابة بكوفيد

Gabor Wavelet Transform(GWT)  وLocal Gradient Increasing Pattern (LGIP)  و ارسالها الى مصنفات اليات

 Support Vectorو  Random Forest (RF)و Ensembleو  Discriminant Analysis (DISC)التعلم 

Machine(SVM)  ,الصدر تم استخدامها, توزعت الى  صورة لأشعة ٧٢٣٢لتصنيف صور اشعة الصدر. للتحقق من كفائة النظام

الصور مأخوذة من قاعدة البيانات راديوكرافي. النتائج المختبرية اظهرت تفوق النظام و  ،١٩-صنفين: اعتيادى )صحي( و كوفيد

( ٩٥،٤٦( ودرجة احكام )٩٦،١٨مقارنة بالنظم الحديثة المماثلة حيث أن معدل الدقة وصلت الى )٪ ١٩-اداء مميز في تصنيف كوفيد

 .SVM( و بأستخدام مصنف ٩٦،٢١هي )٪ F1-score( و ٩٦،٩٨و درجة الحساسية )٪
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 اليات التعلم.  ،استخراج المميزات، اشعة الصدر ،١٩-: تشخيص كوفيدالكلمات المفتاحية

  :پوختە

( يەکێکە لە نەخۆشيە ڤايرۆسيە گواستراوەکان کە دەبێتە هۆی زنجيرەيەک زيان بە تەندروستی و ١٩-نەخۆشی کۆرۆنا )کۆڤيد

ژيانی مرۆڤەکان. بەکارهێنانی وێنەی پزيشکی کاری پسپۆڕەکان بەرەو پێشتر دەبات بەهۆی زانيارييە گرنگەکانی ناوی. 

ە بە بەکارهێنانی تەکنيکەکانی زيرەکی دەستکرد بۆ دياريکردنی توشبوون بە توێژينەوەی زۆر لەسەر وێنەی تيشکی سنگ کراو

بە  ١٩-. لەم توێژينەوەيەدا سيستمێکی زيرەکی پێشکەوتوو ديزاين کراوە بۆ دياريکردنی توشبوون بە کۆڤيد١٩-پەتای کۆڤيد

 Gabor Waveletو  Curvelet Transform (CT)لێکدانی ئەو فيچەرانەی کە دەستمان دەکەوێت بە بەکارهێنانی 

Transform(GWT)  وLocal Gradient Increasing Pattern (LGIP)  کە دەنێردرێن بۆ ئامرازە فێرکارييەکانی

Discriminant Analysis (DISC)  وEnsemble وRandom Forest (RF)  وSupport Vector Machine(SVM) .

( وێنەی تيشکی بەکارهاتووە، کە پۆلێن کراوە بۆ هەردوو حاڵەتی ئاسايی )تەندروست( ٧٢٣٢بۆ تاقيکردنەوەی کارايی سيستمەکە )

ڕاديۆگرافی وەرگيراون. ئەنجامە تاقيگەييەکان دەرخەری ئەوەن کە ئەم سيستمە داهێنراوە  ١٩-، کە لە داتابەيسی کۆڤيد١٩-و کۆڤيد

بە بەراورد بە سيستمەکانی  ١٩-ياريکردنی توشبوون بە کۆڤيدبە تەکنيکی لێکدانی فيچەرەکان تا ئاستێکی باش سەرکەوتووە بۆ د

( ٩٦،٢١)٪ F1-score( و وە ٩٦،٩٨( وە هەستياری )٪٩٥،٤٦(، بە تۆکمەيی )٪٩٦،١٨ديکە کە تێکڕای کاراييەکەی دەگاتە )٪

 .SVMبە بەکارهێنانی 
 

 نی فێرکردن.، تيشکی سنگ، دەرهێنانی فيچەر، ئامرازەکا١٩-: دياريکردنی کۆڤيدکليلە ووشەکان

1. Introduction 

COVID-19 (coronavirus disease 2019) is an infectious disease caused by the coronavirus strain, 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). On March 11, 2020, the World 

Health Organization (WHO) declared the disease to be a pandemic. Given the recent increase in new 

COVID-19 cases and the resumption of daily activities around the world, the need to control the 

pandemic should be emphasized even more [1]. Early diagnosis and separation of infected patients 

are a key factor to increase the chances of successful treatment for infected patients and minimizes 

the risk of an infectious disease like COVID-19 spreading in the community [2]. Several screenings 

are used to detect the onset symptoms of the COVID-19 virus [3], including the Reverse 

Transcriptase-polymerase Chain Reaction (RT-PCR). Radiographical images such as CXR or 

Computed Tomography  (CT) are a technique of routine diagnosis for lung-related conditions, such 

as pneumonia [4] and tuberculosis (TB) [5] which can also be used in the detection of COVID-19. In 

addition, medical images of the infected COVID-19 patients and Artificial Intelligence (AI) were 

found valuable for rapid evaluation of these patients. Therefore, the design and implementation of AI 

image classification tools for COVID-19 with limited data over a short time period was an urgent 

requirement to combat the present pandemic [6]. Studies using chest X-rays to diagnose COVID-19 

have binary or multiple categories. Some researches rely on raw data, while others employ a feature 

extraction method [7]. 

Section 2 puts forward a literature review. Section 3 presents a complete examination of the 

proposed workflow, including sections such as an overview of system architecture, COVID-19 

dataset, data preprocessing, feature extractors, feature fusion and classification, and performance 

metrics. Section 4 discusses the results attained after applying different feature extractors and 

comparing them with the recommended approaches. Lastly, Section 5 provides the conclusion of the 

work. 

http://dx.doi.org/10.25098/5.2.16
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2. Related Literature 

In biomedical image analysis and processing, machine learning and image processing approaches 

have yielded outstanding results, particularly in the field of chest radiology. These methods are often 

used in the classification of pulmonary tuberculosis and the detection of lung nodules. For automatic 

classification of these disease-causing infections, a number of approaches have been successfully 

applied. Different methodologies include CNNs, ensemble learning, feature extraction, and feature 

selection, among others [8]. Recently, a number of works were performed with the help of various 

AI-based techniques to detect COVID-19 using X-ray images. To increase system performance in 

classifying COVID-19, normal, and other lung disorders, various transfer learning approaches, 

different system designs, and ensemble solutions were proposed [9]. A short review of some 

significant contributions from the existing literature is provided.  

Based on chest X-ray images, Tuan D. Pham [1] intended to develop a deep learning model that is 

capable of detecting COVID-19 cases more precisely. In this work, AlexNet, GoogleNet, and 

SqueezeNet, three pretrained CNNs, were chosen and fine-tuned without data augmentation to 

perform 2-class and 3-class classification tasks utilizing three public CXR datasets.  A novel hybrid 

multi-modal deep learning technique was proposed by [10] to support expert radiologists in rapid and 

accurate interpretation of the images for identifying the COVID-19 virus in CXR images. In 

numerous state-of-the-art deep learning models such as baseline ResNet, Inception-v3, Inception 

ResNet-v2, DenseNet169, and NASNetLarge. Narinder Singh Punn and Sonali Agarwal [11] 

introduced the random oversampling and weighted class loss function strategy for unbiased fine-

tuned learning to conduct binary (as normal and COVID-19 conditions) and multi-class (as COVID-

19, pneumonia, and normal conditions) classification of posteroanterior CXR images. The authors in 

[12] proposed an effective machine learning classification which precisely distinguished images of 

COVID-19 CXR from ordinary cases and pneumonia caused by other viruses. Features were 

extracted using both the spatial domain (Texture, GLDM, and GLCM) and frequency domain 

(Wavelet and FFT), and they achieved the highest classification accuracy and sensitivity result to 

distinguish COVID-19 cases from non-COVID-19 cases. López-Cabrera’s study [13] suggested some 

of the challenges of using artificial intelligence approaches into the automatic COVID-19 

categorization in the present scientific literature. It has been recommended that in most of the 

reviewed works an incorrect evaluation protocol is applied, which leads to overestimating the 

outcomes. 

 In [14], for the detection of coronavirus pneumonia infected patients utilizing CXR radiographs, 

five pre-trained convolutional neural network-based models (ResNet50, ResNet101, ResNet152, 

InceptionV3 and Inception-ResNetV2) have been proposed. The study [15] proposed a COVID-19 

infection detection pipeline based on CXR images. The relevant features from the CXR images were 

extracted and picked using the Hybrid Social Group Optimization (HSGO) method. Using a variety 

of classifiers, the selected features were then utilized to classify the CXR images. In an attempt to 

classify Covid-19 affected patients using their CXR scans, the authors in [16] experimented different 

CNN models, including Inception V3, Xception, and ResNeXt. 6432 CXR scan samples were 

collected from the Kaggle repository to analyze the model's performance, with 5467 images being 

used for training and 965 for validation. In [17], the authors addressed a novel CNN framework and 

http://dx.doi.org/10.25098/5.2.16
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a network learning methodology for categorizing COVID-19 from CXR images, CNN learns robust 

features by mixing channel-shuffling and using two residual skip connections. It also utilizes dual 

branching in combination with many convolutional layers to generate a variety of contextual features. 

In [18], the authors developed utilizing machine vision to diagnose COVID-19 from CXR images. 

Through CNN training, the features extracted from X-ray images by the Histogram Oriented Gradient 

(HOG) and Convolutional Neural Network (CNN) were combined to construct the classification 

model (VGGNet). For enhanced edge preservation and lower noise in the images, the Modified 

Anisotropic Diffusion Filtering (MADF) technique was used. The substantial fracture region in the 

raw X-ray images was identified using a watershed segmentation approach. The study [19] proposed 

a novel statistical workflow through the purely Bayesian learning approach based on the shifted 

scaled mixture design Dirichlet in order to discrimination toward patients who are either negative or 

positive with certain viruses and pneumonia. In another work [20] the authors proposed an automatic 

detection framework for COVID-19 infection based on CXR images using transfer learning concept. 

Zulfaezal and his colleagues [21] developed a deep learning technique to detect COVID-19 cases 

based on ResNet-101 convolutional neural network procedure.  

The authors in [22] proposed a deep learning classification model for detection of coronavirus 

using X-ray images based on deep features and SVM classifier. The research paper [23] built a deep 

learning classifier based on an ensemble of pre-trained deep neural networks (DNNS), specifically, 

ReNet34, ReNet50¸ ReNet152, and vgg16 for detecting patients' positive for COVID-19. In [24], the 

authors addressed a method for visual diagnosis of cases of COVID-19 on CXR images. This 

proposed extraction of COVID-19 x-ray images was carried out at one fractional moment (i.e., 

FrMEMs). An amended version of Manta Ray Foraging Optimization (MRFO) for selecting the 

relevant features and KNN classifier to determine if a CXR image is a COVID-19 or a normal case 

were utilized. The study [25] investigated the potentials of automatic corona virus diagnostics 

machine learning methods from CXR images using Logistic Regression (LR) and CNN classifiers. 

To distinguish COVID-19 patients from bacterial pneumonia, viral pneumonia, and normal cases. 

The authors in [26] utilized a deep CNN-based technique with transfer learning. They used nine pre-

trained CNN prototypes to investigate transfer learning strategies, concluding that fine-tuning the pre-

trained CNN models could be successfully applied to a limited class dataset. Al-antari et al. [27] 

recommended a simultaneous deep learning CAD framework based on the YOLO predictor to detect 

and diagnose COVID-19, differentiating it from eight other respiratory diseases: atelectasis, 

infiltration, pneumothorax, masses, effusion, pneumonia, cardiomegaly, and nodules. Afifi and his 

colleagues [28] developed a set of deep learning models using global and local attention -based 

features for the detection of COVID-19 on CXR images. The study [19] proposed one-shot cluster-

based method for efficient classification of COVID-19 CXR images as it classifies images of four 

classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. 

This paper discusses and presents an improved form of LBP, called Local Gradient Increasing 

Pattern (LGIP) along with CT and GWT for feature extraction.  A balanced and large dataset with 

3616 CXR images in each of two classes was used as training data.  Thus, a proposed model was 

constructed by applying fusion strategy that can be used to detect and diagnose cases of COVID-19 

on CXR images. 

http://dx.doi.org/10.25098/5.2.16
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3. Proposed Methodology 
 

3.1 System Architecture 

To detect COVID-19, the proposed approach used X-ray scans as input data. To begin, this method 

transformed RGB images to grayscale and defined the Region of Interest (ROI) by removing 

unwanted areas. Furthermore, the system examined three feature extractors: CT, GWT, and LGIP. 

First, a feature vector was extracted from the X-ray COVID-19 Radiography Database using the CT 

approach. Then the GWT and LGIP techniques were performed to extract another two feature vectors 

from the same X-ray images. These three features were fused and fed into the classification model as 

input data. The number of features extracted by one method was insufficient to accurately identify 

COVID-19. However, using three distinct strategies to extract features could lead to a large number 

of features for accurate classification. In this case, fusion was considered as a concatenation of the 

three distinct vectors. Finally, the fused features were then classified X-ray images to determine if 

they were COVID-19 or not using four well-known classifiers (DISC, Ensemble, RF, and SVM). The 

key steps of the proposed system design were shown in Figure 1. 

 

 
 

Figure 1: Workflow of proposed system 

http://dx.doi.org/10.25098/5.2.16
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3.2 COVID-19 Dataset  

The patients' CXR images were collected and kept in a common place. As a benchmark for 

evaluating the intelligence system's performance, the images were classified as COVID-19-positive 

or COVID-19-negative. In this study, COVID-19 Radiography database [29,30], which is a public 

database of COVID-19 CXR, was used to validate the system's performance. The COVID-19 

Radiography database consists of CXR of 3616 COVID-19 positive cases along with 10,192 Normal, 

6012 Lung Opacity (Non-COVID lung infection), and 1345 Viral Pneumonia images.  In this study, 

a constructed balanced dataset of 7232 images (3616 normal and 3616 COVID-19 positive) were 

randomly selected from this database for a two-class classification. In Figure 2, representative CXR 

images of normal (healthy) and COVID-19 patients are given, respectively. 

 

 

 

Figure 2: Representative CXR images of normal (healthy) (first row) and images of COVID-19 

affected cases (second row) patients 
 

3.3 Data Pre-processing 

Image processing is a significant stage to accomplish meaningful information and accurate 

classification by removing noisy or unwanted pixels from each image. To remove superfluous text 

and machine annotation around images, the ROI was localized (see Figure 3), cropped and resized 

images to 512x512 pixels after the input images were converted from RGB to grayscale (see Figure 

4). The ROI on the CXR images was determined by an area covering mainly lung region in order to 

achieve valuable information. As the raw images were taken in real life with a large variance in 

exposure and contrast, image enhancement was needed for superior classification performance. 

Therefore, the contrast enhancement of grayscale images was implemented using Contrast Limited 

Adaptive Histogram Equalization technique (CLAHE) and the median filter for a proper brightness 

and enhancement. Before importing the input CXR images into a feature extraction task, image 

adjustment was performed to improve the quality of images as shown in Figure (5). 

http://dx.doi.org/10.25098/5.2.16
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Figure 3: Samples of CXR images dataset used for proposed system; a) localized ROI area of 

healthy individuals (first row), b) localized ROI area of COVID-19 affected cases (second row). 

 

Figure 4: Samples of CXR images dataset used for proposed system; a) cropped ROI area of 

healthy individuals (first row), b) cropped ROI area of COVID-19 affected cases (second row). 

  

 

 

 

 

 

 

 

Figure 5: Samples of CXR images dataset used for proposed system; a) original CXR image, b) 

localized ROI area, c) resized ROI area, d) denoised CXR image, e) adjusted CXR image. 

 

(a) (b) (c) (d) (e) 

http://dx.doi.org/10.25098/5.2.16
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3.4 Feature Extraction 

Feature extraction is the process of transforming the raw pixel values from an image into a set of 

features, normally this stage involves obtaining important features extracted from input patterns that 

can be used in the classification tasks [31]. Three sets of extracted features (CL, GWT, and LGIP) 

are included for feature extraction in the proposed scheme.  

3.4.1 Discrete Curvelet Transform 

The Curvelet transform is a new anisotropic directional wavelet transform that allows for optimal 

object sparse representation. Candès et al. [32] introduced two novel Curvelet transforms based on 

various Fourier operations in 2005, namely, unequally spaced fast Fourier transform (USFFT) and 

wrapping based fast CT, which are simpler, faster, and less redundant than prior techniques. CT based 

on wrapping of Fourier samples takes an image having dimension M x N as input in the form of a 

Cartesian array 𝑓[𝑥, 𝑦] such that 0 ≤ 𝑥 < 𝑀, 0 ≤ 𝑦 < 𝑁 and creates a number of Curvelet 

coefficients indexed by j scale , 𝜃 orientation  and two spatial location parameters of curvelets 

(𝐾1, 𝐾2) as output [33]. 

𝐶𝑇(𝑗, 𝜃, 𝐾1, 𝐾2) =  ∑ 𝑓[𝑥, 𝑦]
0≤𝑥<𝑀
0≤𝑦<𝑁

. 𝜑𝑗,𝜃,𝐾1,𝐾2
[𝑥, 𝑦]       (1) 

Wrapping-based CT is a multiscale transform that has a pyramid structure with numerous 

orientations at each scale. In the frequency domain, this pyramid structure is made up of numerous 

sub bands of different scales. Curvelet transforms are widely used in the frequency domain to reach 

higher levels of efficiency. That is, both the Curvelet and the image are converted in the Fourier 

frequency domain and then multiplied. Finally, the Curvelet coefficients are obtained by inverse 

Fourier transformation of the product Therefore, above equation can be written in frequency domain 

as [33], 

𝐶𝑇 = 𝐼𝐹𝐹𝑇 { 𝐹𝐹𝑇(𝐶𝑢𝑟𝑣𝑒𝑙𝑒𝑡) 𝑥 𝐹𝐹𝑇(𝑖𝑚𝑎𝑔𝑒)}       (2) 

CT scan depict an image in a variety of scales, each with a different number of orientations.  In 

this study, CT was applied to an image to obtain its coefficients and these coefficients were then used 

to form the texture descriptor of that image. Once the curvelet coefficients were generated and stored 

in each subband, the mean and standard deviation of the coefficients associated with each subband 

were computed. A set of 52 features for each image was extracted from the dataset of CXR images 

at the end of this extraction process. 

3.4.2 Gabor Wavelet Transform 

Gabor-wavelets are used to capture the image's local structure, which includes spatial frequency 

(scales), spatial localization, and orientation selectivity. As a result, Gabor-wavelets are widely used 

in a variety of disciplines, including texture analysis and image segmentation [34]. A two-dimensional 

Gabor filter is a Gaussian kernel function modulated by a complex sinusoidal plane wave in the spatial 

domain, defined as, 

http://dx.doi.org/10.25098/5.2.16
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𝐹(𝑢1, 𝑢2) = exp ( − 
(𝑢1

2+ 𝛾2𝑢2
2)

2𝜎2 )  𝑥 𝑐𝑜𝑠 (
2𝜋

𝜆
𝑢̂1),              (3) 

𝑢̂1 = 𝑢1𝑐𝑜𝑠𝜃 + 𝑢2𝑠𝑖𝑛𝜃                                                       (4) 

𝑢̂2 = −𝑢1𝑠𝑖𝑛𝜃 +  𝑢2𝑐𝑜𝑠𝜃                                                     (5) 

Where the arguments 𝑢̂1 and 𝑢̂2 specify the position of a light impulse in the visual field, 𝜃 is the 

orientation of the normal to the parallel stripes of a Gabor function, 𝜎 is the standard deviation of the 

Gaussian envelope and 𝜆 is the spatial aspect ratio which specifies the ellipticity of the support of the 

Gabor function. In this work, Gabor wavelets filters in four different scales and six orientations were 

used and a set of 48 features for each image was extracted from the dataset of CXR images. 

3.4.3 Local Gradient Increasing Pattern (LGIP) 

LGIP is a pixel-based binary imaging descriptor that is robust against to fluctuations in 

illumination and white noise. Consequently, it's employed to make the binary vectors for the vertical 

and horizontal sub-image feature matrices that arise from partial image division [35]. LGIP is used 

to represent the magnitude and direction of an increasing trend in local intensity. First, LGIP 

calculates gradient responses in eight possible orientations at each pixel using Sobel masks [36]  

𝑀0, 𝑀1 … … , 𝑀7  as shown in Figure 6. Depending on the sign of the gradient value, each mask's 

gradient value is encoded into a single bit (1 or 0). As a result, each pixel in the partial CXR image 

has an 8-bit code descriptor. These eight masks are applied on each pixel. If the mask is positive for 

the pixel response, then the resulting bit is set to 1, or 0. Therefore for every pixel, a value of 8 bit is 

generated, where a given bit is the corresponding result of a particular mask. Alternatively, like the 

LBP operator, the eight bits can be determined using intensity comparisons between the core pixel 

and its neighbors to speed up calculation. In this work, the Sobel gradient operator was used to boost 

stability in the presence of non-uniform light variations and random noise and finally a set of 37 

features for each image was extracted from the dataset of CXR images. 

 

 

Figure 6: Sobel gradient masks in eight orientations [36]. 
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3.5 Feature Fusion and Classification 

Data fusion has been applied in several applications for machine learning and computer vision. 

Feature fusion, in particular, can combine multiple feature vectors. The multi-feature fusion can 

improve the robustness of the model predictions [37]. This work proposed a fusion of feature vectors 

attained by a combination of CT (1 x 52), GWT (1x 48), and LGIP (1 x 37) methods. Equations (6), 

(7), and (8) represent features extracted by CT, GWT, and LGIP, respectively. The extracted feature 

vectors were combined by concatenation and represented by Equation (9). 

𝐹𝐶𝑇1 𝑥 𝑛= {𝐶𝑇1 𝑥 1+ 𝐶𝑇1 𝑥 2 + 𝐶𝑇1 𝑥 3 .……….  𝐶𝑇1 𝑥 𝑛}                                                              (6) 

𝐹𝐺𝑊1 𝑥 𝑚= {𝐺𝑊1 𝑥 1+ 𝐺𝑊1 𝑥 2 + 𝐺𝑊1 𝑥 3 .……….  𝐺𝑊1 𝑥 𝑚}                                                      (7) 

𝐹𝐿𝐺𝐼𝑃1 𝑥 𝑘= {𝐿𝐺𝐼𝑃1 𝑥 1+ 𝐿𝐺𝐼𝑃1 𝑥 2 + 𝐿𝐺𝐼𝑃1 𝑥 3 .……….  𝐿𝐺𝐼𝑃1 𝑥 𝑘}                                         (8)  

 

𝐹𝑢𝑠𝑒𝑑 (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟)1 𝑥 𝑝
𝑐𝑎𝑡

 
=   {𝐹𝐶𝑇1 𝑥 𝑛 , 𝐹𝐺𝑊1 𝑥 𝑚 , 𝐹𝐿𝐺𝐼𝑃1 𝑥 𝑘 }                      (9) 

 

Then the features extracted by CT, GWT, and LGIP were fused with 137 features. This fusion 

vector, which considered as the final input for the training and testing dataset, was fed to the classifiers 

in order to validate the proposed approach and identify COVID-19 images. In the proposed workflow, 

machine learning models were used to identify patients affected by COVID-19 infection. To achieve 

the objective of identifying COVID-19 positive patients among normal healthy individuals', four 

pattern recognition classifiers namely DISC, Ensemble, RF, and SVM classifiers were separately 

performed. 

 

3.6 Evaluations metrics 

 

For COVID-19 classification from CXR images, four widely used performance metrics were 

utilized to evaluate the proposed model's performance: accuracy, sensitivity, precision, and F1-score. 

To compute the metrics specified by Equations (10)– (13), four distinct performance parameters were 

used: true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                     (10) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                         (11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                             (12) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
      (13) 
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4. Result and Discussion 

The performance of the proposed model was evaluated based on extracted features derived from 

CL, GWT, and LGIP coefficients for more than 7200 CXR images to automatically identify the class 

of the input image. All experiments were conducted in MATLAB using CXR images described in 

Section 3.2. Different scenarios using different features individually and different combinations of 

CL, GWT, and LGIP features have been suggested. For each scenario, these extracted features were 

classified by using four pattern recognition classifiers (i.e., DISC, Ensemble, RF, and SVM) to see 

which scenario could perform better classification performance. Furthermore, the entire dataset was 

divided into two groups: 80% for training the model and 20% for evaluation of the classification 

performance using holdout cross-validation technique. Performances of the suggested scenarios were 

analyzed through a number of different measures including accuracy, sensitivity, precision, F1-score, 

and error rate computed from confusion matrix.  

From the experiments performed on self-collected dataset, the detailed category/class wise 

analysis of each scenario was evaluated in terms of accuracy and overall accuracy as (mean ± SD) 

with DISC (Table 1), Ensemble (Table 2), RF (Table 3), and SVM (Table 4) classifiers respectively. 

Among these scenarios in Table 1 and as depicted in Table 4, it is concluded that combining the CL, 

GWT, and LGIP features (scenario 7) together attain the highest overall accuracy of 92.35 ± 0.50 % 

and 96.18 ± 0.43 % followed by fusion of GL and GWT features (scenario 4) with 90.32 ± 0.50 % 

and 95.02 ± 0.59 % along with DISC and SVM classifiers respectively, while the classification overall 

accuracy of features derived from LGIP method had the lowest scoring (84.00 ± 0.85 % and 91.07 ± 

0.87). In the case of Ensemble (Table 2) and RF (Table 3) classifiers use, it can be observed that the 

highest classification overall accuracy of 92.78 ± 0.52 % and 91.05 ± 0.86 % were achieved along 

with combining features extracted from the CL (52 features), GWT (37 features), and LGIP (40 

features) methods, whereas GWT method gave the lowest performance results recording 87.88 ± 0.80 

% and 85.47 ± 0.72 % overall accuracy respectively as compared to the other scenarios. 

TABLE 1: Performance analysis on overall accuracy with DISC classifier. The 

highlighted accuracy in bold indicates the best classification result. 

Methods Features 
Per Class Accuracy (%) Overall Accuracy 

(%) Non-COVID COVID 

CT 52 88.45 ± 1.03 82.37 ± 1.57 85.41 ± 1.07 

GWT 48 82.69 ± 1.53 87.64 ± 0.86 85.17 ± 0.81 

LGIP 37 83.49 ± 1.32 84.50 ± 0.89 84.00 ± 0.85 

CT + GWT 100 91.17 ± 1.37 89.47 ± 0.92 90.32 ± 0.58 

CT + LGIP 89 91.03 ± 1.15 89.36 ± 1.38 90.20 ± 0.75 

GWT+ LGIP 85 88.02 ± 1.34 90.06 ± 1.00 89.04 ± 0.58 

CT + GWT + LGIP 137 93.31 ± 0.36 91.38 ± 0.91 92.35 ± 0.50 
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TABLE 2: Performance analysis on overall accuracy with Ensemble classifier. The 

highlighted accuracy in bold indicates the best classification result. 

Methods Features 
Per Class Accuracy (%) Overall Accuracy 

(%) Non-COVID COVID 

CT 52 91.03 ± 1.24 89.79 ± 1.17 90.41 ± 0.73 

GWT 48 85.53 ± 1.31 90.23 ± 0.56 87.88 ± 0.80 

LGIP 37 85.08 ± 1.42 91.25 ± 1.17 88.17 ± 1.00 

CT + GWT 100 92.11 ± 0.92 93.09 ± 1.08 92.6 ± 0.76 

CT + LGIP 89 92.82 ± 1.23 92.33 ± 1.10 92.57 ± 0.65 

GWT+ LGIP 85 88.63 ± 1.36 92.73 ± 1.06 90.68 ± 0.91 

CT + GWT + LGIP 137 92.15 ± 1.15 93.41 ± 0.69 92.78 ± 0.52 

 

TABLE 3: Performance analysis on overall accuracy with Random Forest classifier. 

The highlighted accuracy in bold indicates the best classification result. 

Methods Features 
Per Class Accuracy (%) Overall Accuracy 

(%) Non-COVID COVID 

CT 52 90.41 ± 1.01 86.00 ± 0.73 88.20 ± 0.57 

GWT 48 85.72 ± 1.00 85.21 ± 0.92 85.47 ± 0.72 

LGIP 37 85.14 ± 1.33 85.85 ± 0.89 85.49 ± 0.79 

CT + GWT 100 91.56 ± 1.08 89.14 ± 0.8 90.35 ± 0.67 

CT + LGIP 89 92.19 ± 1.09 88.96 ± 0.69 90.58 ± 0.48 

GWT+ LGIP 85 88.07 ± 1.29 87.44 ± 1.47 87.75 ± 0.73 

CT + GWT + LGIP 137 92.71 ± 1.19 89.4 ± 1.16 91.05 ± 0.86 

 

TABLE 4: Performance analysis on overall accuracy with SVM classifier. The 

highlighted accuracy in bold indicates the best classification result. 

Methods Features 
Per Class Accuracy (%) Overall Accuracy 

(%) Non-COVID COVID 

CT 52 93.7 ± 1.38 91.63 ± 0.89 92.66 ± 0.74 

GWT 48 92.78 ± 0.94 91.39 ± 0.82 92.08 ± 0.58 

LGIP 37 91.36 ± 1.57 90.78 ± 0.98 91.07 ± 0.89 

CT + GWT 100 95.71 ± 0.65 94.34 ± 1.06 95.02 ± 0.59 

CT + LGIP 89 96.04 ± 0.63 93.96 ± 0.63 95.00 ± 0.55 

GWT+ LGIP 85 94.31 ± 0.95 93.30 ± 0.71 93.81 ± 0.60 

CT + GWT + LGIP 137 96.98 ± 0.63 95.38 ± 0.69 96.18 ± 0.43 
 

Based on the experimental results for all seven scenarios presented in Figure 7, it can be concluded 

that the fusion of features extracted from CL, GWT, and LGIP techniques has a positive impact on 

the performance and outperformed the other scenarios. The results revealed that all four classifiers 

achieved the highest overall accuracy of 96.18 ± 0.43 %, 92.78 ± 0.52 %, 92.35 ± 0.50 %, and 91.05 
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± 0.86 % by using SVM, Ensemble, DISC and RF classifiers respectively. On the other hand, the 

fusion of CL, GWT, and LGIP techniques with SVM classifier was sufficient to record maximal 

overall accuracy performance of 96.18 ± 0.43 % among the remaining classifiers for all scenarios.  

 

Figure 7: Comparison of overall accuracies for different scenarios using different classifiers. 

The same fact has been concluded by investigating other performance measures (precision, recall, 

and F1-score) to evaluate the proposed model.  For all classifiers, the best precision rate was achieved 

with a set of features fusion of CL, GWT and LGIP methods (scenario 7) which outperformed the 

other scenarios. The results of scenario 7 provided that all four classifiers attained the peak precision 

of 95.46%, 93.34%, 91.55%, and 89.75% using SVM, Ensemble, DISC and RF classifiers 

respectively; however, the lowest precision rate of 83.40 % was recorded using Curvelet method with 

DISC classifier. Moreover, the experiment recorded maximum precision performance of 95.46% with 

SVM classifier among the remaining classifiers for all scenarios. Comparison results of precision 

rates of all system scenarios with SVM, DISC, Ensemble and RF classifiers are presented in Figure 

8. 
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Figure 8: Comparison of precision for different scenarios using different classifiers. 

Furthermore, the fusion of features from CL, GWT and LGIP methods outperformed the others in 

terms of sensitivity rates as 96.98%, 93.32%, 92.71%, and 92.16% were achieved using SVM, DISC, 

RF and Ensemble classifiers respectively (Figure 9); conversely, the lowest sensitivity rate of 82.70 

% has been recorded when GWT method was utilized with DISC classifier. Based on the 

experimental results for all four classifiers depicted in Figure 9, it can be verified that the value of 

sensitivity rate with SVM classifier was overall superior and outperformed the other classifiers. With 

regard to the F1-score rates, the results presented in Figure 10 demonstrate the superiority of the 

fusion of CL, GWT and LGIP scenario and undoubtedly it yielded excellent results which defiantly 

go beyond the other scenarios. The best performance with F1-score rate of 96.21% was achieved 

using fusion of CL, GWT and LGIP methods with SVM classifier, which surpassed other classifiers 

with F1-scor rates of 92.74%, 92.43%, and 91.20% for Ensemble, DISC, and RF classifiers 

respectively; however, the F1-score rate of LGIP method using DISC classifier had the lowest 

recording of 83.92 %. 
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Figure 9: Comparison of sensitivity for different scenarios using different classifiers. 

 

Figure 10: Comparison of F1-score for different scenarios using different classifiers. 

Moreover, the experiments from (Figure 11) clearly demonstrated that the features derived by 

fusion of CR, GWT and LGIP scenario outperformed other scenarios and recorded the highest 

precision, sensitivity, and F1-score rates with SVM classifier. Considering the obtained results, the 

highest precision, sensitivity, and F1-score scores of the features extracted using fused CR, GWT and 

LGIP methods were 96.21%, 96.98, and 95.46% respectively, and was achieved using 137 effective 

features. While, the lowest precision, sensitivity, and F1-score scores were attained with a score of 

91.10%, 91.37, and 90.85% respectively, and was achieved using 40 extracted features.  
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Figure 11: Comparison of system performance for different scenarios using SVM classifier. 

In this study, the performances of the suggested scenarios were also analyzed through 

misclassification error rate metric using the same dataset and computing environment. As 

demonstrated by (Figure 12), the misclassification error rates for the suggested scenarios were 

measured. The findings verify that the fusion of CR, GWT and LGIP scenario results in a lower 

misclassification error of 3.82% rate which confirms that the proposed scenario performs 

considerably much better than other suggesting scenarios. Therefore, this scenario was chosen as a 

proposed method for detecting and diagnosing cases of COVID-19 on CXR images. 

 

Figure 12: Comparison of misclassification error rate for different scenarios using SVM 

classifier. 
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Finally, the performance of the proposed fusion system was compared with some existing state-

of-the-art systems as shown in Table 5. The proposed system provides a promising result 

especially in terms of overall classification accuracy when comparing to the existing methods, 

which was due to the integration of CL, GWT and LGIP methods. However, in the other 

researches a huge number of features were used, while in the proposed system, 137 features were 

used with the best performance results achieved. 

Table 5. Comparison of proposed classification accuracy with recent techniques 

Author Year 
COVID datasets 

Accuracy (%) 
Method Classifier 

Zulfaezal et al. [21] 2020 
CNN 

(ResNet101) 
---- 71.90 

Elaziz et al. [24] 2020 FrMEMs KNN 96.09 

Bourouis et al. [19] 2021 SSDDMM Bayes 93.03 

Ohata et al. [20] 2021 CNN MLP 95.64 

Keidar et al. [23] 2021  DNNS 90.30 

Proposed work  
CT, GWT, and 

LGIP 
SVM 96.18 

 

From the above experimental results, it is obvious that the proposed framework can be successfully 

applied to more precisely identify COVID-19 cases from CXR images. As a result, this can help 

doctors to do a clear diagnosis, or it can be used as a tool to provide second opinion in identifying 

COVID-19 cases. 

5. Conclusion: 

Early diagnosis of COVID-19 patients is essential in preventing the disease from spreading. Image 

processing approaches utilized to X-ray images can help identify COVID-19 by employing artificial 

intelligence. This work designed an intelligent method for the COVID-19 identification using feature 

fusion and machine learning model. Each trained model was assessed using benchmark performance 

metrics e.g. accuracy, precision, sensitivity, F1-score, and misclassification error rate under seven 

different scenarios concerned with balanced learning and classification approach. In order to test the 

proposed model, a publicly available CXR images was used, the same dataset was used in earlier 

COVID-19 studies. The proposed feature fusion pipeline showed a higher overall classification 

accuracy (96.18 ± 0.43 %) than the accuracies achieved by using features attained by individual 

feature extraction methods, such as CT, GWT and LGIP. In addition, experimental results revealed 

that the proposed model is more effective than previous works carried out for the detection of COVID-

19 using CXR imaging. 
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