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Abstract:

This study experimentally investigates, Long-Term Evaluation (LTE) performance in a deep
indoor dense urban environment, focusing on Reference Signal Received Power (RSRP) and
Reference Signal Received Quality (RSRQ). Measurements were taken on a live LTE network
operating on Band DCS1800 (EARFCN 1750) with a 20 MHz bandwidth. The main serving sites,
Site-A and Site-B, significantly influenced basement signal reception. Site-A used a CNNPX303F
antenna (gain 11.7 dBi, 68° horizontal and 23° vertical beamwidths, 46 dBm downlink, 23 dBm
uplink, 25 m height). Before optimization, an azimuth of 350° and high RET (100°) produced weak
RSRP (=115 dBm) and unstable RSRQ (—14 dB). After realigning Site-A to 30° and reducing Site-
B’s RET to 50°, RSRP improved by 6—10 dB over the 15 m path, while RSRQ showed limited gains
due to interference. The findings reveal that azimuth and tilt optimization enhance RSRP but remain
insufficient for RSRQ stability without effective interference-management strategies.

Keywords: Reference Signal Received Power, Reference Signal Received Quality, Long-Term
Evaluation, indoor coverage, interference, optimization.
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Introduction

The topic of indoor wireless coverage has become a primary research focus in the last 20 years,
particularly as LTE becomes more widespread and 5G is on the verge of being adopted (Dudhat, A.,
& Mariyanti, T., 2022). Much literature has highlighted challenges that have been faced with respect
to signal penetration and subsequent reduction of the quality of signal in the indoor setting.

The use of mobile communication networks in densely populated cities has brought about a special
issue of coverage, capacity and quality of service. The ubiquitous development of mobile
communication infrastructures in modern metropolitan environments has spawned a set of issues
related to coverage, capacity and the quality of service (Imoize, A., et al., 2023). As more people
begin to use indoor mobile connectivity in business, entertainment and day-to-day activities, the
performance of wireless network in indoor environment has become a decisive factor on the level of
user satisfaction. The penetration loss, multi path fading, and interference of multiple neighbouring
sites make deep indoor conditions especially difficult, as it occurs in basements and underground
shopping centres (Holma, H., & Toskala, A. 2011).

Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ) are
two key performance indicators of LTE networks. RSRP quantifies the mean power of reference
signal received, and RSRQ quantifies the ratio of RSRP to the total reaches of Received Signal
Strength Indicator (RSSI) including interference and noise. Though a general belief that raising the
RSRP will thereby raise the RSRQ, the experimental results show that this cannot be a linear
relationship particularly in an environment with high interference (Lin, Y., Choi, J., & Kim, J. 2013,
and Lee, D., et al. 2012).

LTE performance measurement studies, as noted by Holma and Toskala (2009), highlight that
RSRQ is more sensitive to interference than RSRP, while 3GPP (2018) provides measurement
methods that do not fully reflect real-world indoor interactions. Propagation models such as COST
231 (1999) and WINNER II (Ky®dsti et al., 2007) attempt to account for signal attenuation due to
walls and materials but often underestimate interference effects in dense environments. Earlier indoor
propagation research (Saleh et al., 1985) predates modern small-cell LTE deployments. More recent
studies emphasize RF optimization techniques—such as antenna tilt and azimuth reorientation—to
enhance coverage, with Sesia et al. (201 1) noting that tilt adjustments can expand coverage but require
interference control, and Lin et al. (2013) and Zhang et al. (2013) showing that while azimuth
optimization strengthens signals, it may not improve quality under co-channel interference.

This work aims at giving empirical information on the practical interference of the RSRP and
RSRQ at deep indoor dense urban conditions. In this paper we attempt to provide empirical data that
explains the interdependence of RSRP and RSRQ below the ground surface of the earth. In particular,
we consider the performance of LTE Band DCS1800 in a basement market in Sulaimaniyah City,
Iraq. The article gives an in-depth experimental finding before and after introducing RF optimisation
methods such as altering antenna azimuth and remote electrical tilt (RET) adjustments. We show the
variation of RSRQ with RSRP through step-by-step measurements because of intra-band interference.

DOI: http://dx.doi.org/10.25098/9.2.30

87

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/9.2.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 85-97
Volume (9), Issue (2), December 2025
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

The aims of this study are three-fold to:

1- give comprehensive experimental measurements were conducted in the downtown Sulaimaniyah
city market basement in Iraq and this permitted realistic consideration of signal propagation within
the complex multi-layered indoor environment.

2- compare the effect of RF optimisation activities on RSRP and RSRQ.

3- comment on the wider impact on network planning and optimisation strategies in LTE and wider.

Methodology
2.1 Experimental Environment

The test campaign was carried out in the market basement of a market located in downtown
Sulaimaniyah City. It is a high-density urban hot spot with many macro-cell locations. The basement
is built with 15 cm thick walls and is some 2.5m under the surface as shown in Fig.1. These structural
parameters are the major hurdles to radio wave propagation, thus making the location ideally
convenient to explore the performance of deep indoor signals.

2.2 Network Configuration

The LTE network discussed in the current research works on Band DCS1800 (EARFCN 1750),
which is a frequency range that is widely implemented in high-density urban areas due to its
appropriate balance between the coverage area and the capacity offering. The identified two base
stations, which are referred to as Site-A and Site-B, have been recognized as the major contributors
of the indoor coverage performance that has been realized in a basement test site. Antenna orientation
as well as mechanical tilt of the antennas have a preponderant effect on the effectiveness of signal
penetration in such an environment.

i By

Figure 1: Study site of the experimental campaign in downtown Sulaymaniyah City
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First, it was discovered that the azimuth of Site-A had been disturbed and was pointing at 350 o C
and this was sending the larger portion of its radiated energy out of the basement door. Therefore, the
signal quality was poor because the signal obtained depended heavily on off-axis inferior reflections.
Site-B with high-tilt (RET 100%), gave minimal horizontal penetration and hence low deep-indoor
coverage, which was reflected in the RSRP values of up to -115 -1/m and RSRQ values of -14 -1/m.

To eliminate these shortcomings, Site-A was re-aligned to an azimuth of 30 o, and the entrance to
the basement was therefore directly aimed at. At the same time, site B was mechanically tilted by 50,
hence allowing the radiated energy to travel better in the interior spaces. The antenna (Site-A
CNNPX303F) has a high amount of transmit power, 46dBm in the downlink and 23dBm in the uplink,
and a gain of 11.7dbi, but this power cannot be fully utilized without accurate alignment.

Post-optimization tests indicated a significant improvement of RSRP of 6 to 10 dB along the 15 m
indoor route, whereas RSRQ had rather modest improvements, as it was typically less than 1 dB, due
to still remaining interference effects. These results highlight the fact that, despite the fact that
azimuth and tilt optimization significantly increase signal strength and spatial coverage, these
measures are not enough to stabilize RSRQ in deep-indoor conditions. In this regard, to ensure a
complete signal quality improvement in dense LTE deployments, a combination of RF optimization
methods with interference -management solutions that directly address the factors that cause signal
degradation are required.

Table 1. Network Configuration and Measurement Comparison Before and After Optimization

Parameter Befqre. . Afte.r .. Observed Effect on Measurements
Optimization Optimization
. 350° (not o /1 . . .
Site-A alioned with 30° (aligned with | Stronger direct beam penetration into
Antenna £ basement basement; RSRP improved by ~6—10
. basement
Azimuth entrance) dB.
entrance)
ii()?lal(hlgh tilt 50 (reduced tilt, | Extended coverage footprint;
Site-B RET £ signal  projects | improved RSRP penetration at mid
concentrated .
further) distances.
downward)
RSRP (0m, | Very weak (= — | Improved (= - |~7 dB improvement, but RSRQ gain
deep indoor) | 115 dBm) 108 dBm) marginal (-15.0 —» —14.2 dB).
8 dB stronger signal; RSRQ improved
RSRP (3m) | -111dBm ~103 dBm only 0.4 dB (~14.5 — ~14.06).
~6 dB stronger signal; RSRQ
RSRP (6m) | —94.25dBm | ~88.31dBm improved slightly (-9.44 — ~8.50).
~9 dB stronger; RSRQ improved more
RSRP (9m) —90.69 dBm —81.19 dBm significantly (_10.31 — -8.69).
Minimal difference; RSRQ close in
RSRP (12m) | 78 dBm ~77dBm both cases (—8.38 — —8.06).
RSRP _65.81 dBm _64.5 dBm Both strong; RSRQ saturated near —7
(15m, gate) dB.
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2.3 Measurement Tools

The main tool used in this study was the TEMS Investigation 18, an industry-accepted drive-testing
and network-optimisation-tool that is experiencing a large-scale usage in the academic community as
well as in the telecommunications industry. This software equips engineers with ability to record,
query and visualise significant LTE performance indicators such as RSRP, RSRQ, and Signal-to-
Interference-plus-Noise Ratio (SINR), and various handover incidents. TEMS Investigation was
particularly beneficial in the current research since it includes real-time and fine-grained
measurements that provide straightforward connect bridging physical-layer parameters and visible
radio-network performance in deep indoor conditions.

These measurements were done in a predetermined path in the basement market starting at the
most isolated inside location (0 m) and moving away to the main gate (15 m). To ensure the systematic
data collection, data were observed in 3mb (Omb, 3mb, 6mb, 9mb, 12mb, and 15mb) successive
intervals. At every point of measurement, data regarding the serving cell and the cells in the
surrounding was recorded including the Physical Cell Identifier (PCI), the EARFCN, and the signal
strengths involved. The methodology has enabled the identification of intra-band sources of
interference that have direct effects on the RSRQ performance.

The testing set-up included lock settings to promote a methodological consistency. To avoid
unintentional cell reselection or inter band transitions, the mobile test device was permanently
connected to LTE Band DCS1800 (EARFCN 1750). In consequence, the total results were limited to
the effect of optimisation of azimuth and tilt on the target serving cells.

Every data-collection session involved two different stages:

1. Measurements Pre-Optimisation: Measures obtained with the Site-A antenna azimuth fixed to 350°
and Site-B RET value set to 100.

2. Post Optimisation Measures - These were done after changing the Site-A azimuth to 30° and
decreasing the Site-B RET value to 50.

This combination of datasets will allow straightforward comparison at each discrete distance,
allowing an accurate evaluation of the effects of RF optimisation actions on both RSRP and RSRQ.
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2.4 Mathematical Formulation

RSRQ is defined in (Sesia, S., et al. 2011):

pspp _ NV X RSRP .
¢="Rssi @
In dB:

where N is the number of resource blocks, RSRP is the reference signal received power, and RSSI
represents the total received signal strength including interference and noise. While RSRP is a direct
measure of received power, RSRQ encapsulates the quality of that power relative to the interference
environment.

Decompose total received power:
RSSI =S+ 1+N, 3

where S is serving-cell power over the measured bandwidth, I is in-band interference from
neighbors, and N, is thermal + receiver noise.

Because RSRP is measured on reference-signal REs and RSSI on the full band, relate the two via
an aggregation factor ¢ > 0:

S = a RSSI 4)
where a collects RE density, antenna ports, RS power boosting

RESULTS
3.1 Step-by-Step Measurements

Table 2 provides a detailed comparison of the obtained RSRP and RSRQ values at the following
spatial points of Om, 3m, 6m, 9m, 12m and 15m, starting at the most secluded point of the house and
proceeding to the main entrance of the basement marketplace, before and after the application of RF-
optimization measures. It is shown by empirical evidence beyond reasonable doubt that re-orientation
of the antenna azimuth and recalibration of the RET parameters have had significant effect of
increasing the received signal power at each sampling locus; however, the concomitant increase in
RSRQ displayed a rather subdued, non-linear dynamism.
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Table 2. Measured RSRP and RSRQ Values Before and After Optimization

: RSRP Pre- | RSRP Post- | RSRQ Pre- | RSRQ Post-

Distance S T o T

i) Optimization Optimization Optimization Optimization
(dBm) (dBm) (dB) (dB)

0 ?Ti? Weak (= - | | proved (~-108) | -15.0 -14.2

3 -111 -103 -14.5 -14.06

6 -94.25 -88.31 -9.44 -8.50

9 -90.69 -81.19 -10.31 -8.69

12 -78 =77 -8.38 -8.06

15 -65.81 -64.5 -7.75 -6.94

3.2 Graphical Representation

To explain the relationship between RSRP and RSRQ, Fig. 2 and Fig. 3 portray the observed
patterns in the entire distance band in the basement setting, prior to and after RF optimisation. These
visualisations go hand in hand with the tabulated data and provide more transparent views into the
dependence of coverage strength and signal quality on distance and network reconfiguration. A pre-
optimisation plot of RSRP and RSRQ (see Fig. 2) shows the starting values of signal strength and
quality throughout the basement. RSRP reaches middle values over the whole distance profile, and
the well-covered areas are closer to the basement entrance (12 m to 15 m). RSRQ values do not show
a great deal of variation and distance dependence, reflecting the impacts of interference and ambient
noise.

Type EARFCN  CI  Cl[Group) CI (Cell) RSRAP RSRO
sC 1750 350 116 2 13.25 -15.38
MN 1750 436 145 1 1318 -13.50
MN 475 315 105 0 1556  FEZS
MN 475 317 105 2 19.44 -13.13
MN 1750 321 107 0 2163 2244

Figure 2: RSRP and RSRQ before optimization

Fig. 3, which illustrates RSRP and RSRQ following optimisation, shows the effect of RF
optimisation, which is most evident between 3m and 9m where the gains are between 6-10 dB. The
improvements are minimal with RSRQ and this indicates that it also depends not only on signal power
but also on interference and noise. The synthesized point of view reveals that RF optimisation is a
profitable approach to maximize the coverage power, although further interference-controlling
techniques cannot be ignored to advance the quality of the signals in crowded indoor environments.
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LTE Serving/Neighbor Cell [EQ1]

Type EARFCN  CI Cl(Group) CI[Celll  RSRP
SC 1750 350 116 2 7.94
MN 475 317 105 2 13.06
MN 1750 436 145 1 14.81
MN 1750 321 107 0 2113
MN 1750 169 56 1 2250
MN 1750 1K) 2 24.38
MN 475 315 105 0 25.56

Figure 3: RSRP and RSRQ after optimization
3.3 Prediction via Geolocation Tool

The measurement patterns during the experimental campaign are supported by the geolocation
model used herein. Using the Geolocation Tool, forecasts were made in the basement-market micro-
environment, including the deepest indoors loci and the main entry point under two different
operating regimes before and after applying radio frequency (RF) optimisation processes to the main
serving cells. The simulated results showed that, without optimisation, the average Reference Signal
Received Power (RSRP) in deep indoor locations had reached the value of -81.62 dBm with the
RSRQ being -11.10 dB. The latter are reflective of the attenuation caused by architectural barriers,
i.e., 15-centimetre thick walls that surround the basement, which in addition to weakening signal, also
increases intra-band interference, as shown in Figs 4 and 5. Progressive increases in RSRP at
progressive distances to the main gate were correlated with concomitant increases in signal strength
and its quality, though the dependence between RSRQ and RSRP was non-linear, hence indicative of
the dual dependence of RSRQ on received power and ambient interference RSSI.
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Figure 4: Geolocation simulation of RSRP in the basement market before RF optimization
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Figure 5: Geolocation simulation of RSRQ in the basement market before RF optimization.

The post-optimisation predictions show that there is a significant increase in the RSRP to -74.58 -
1 dBm, which is to attest to a significant improvement in coverage capacity. On the other hand, the
measured RSRQ enhancement was small as it increased to -10.79 dB. These measurements capture
the additional effect of RF optimisation: although signal strength RSRP can be easily enhanced by
corrective measures, signal quality RSRQ is mainly limited by existing levels of interference and not
the actual power transmission.

Interestingly, the simulations also indicate that, under the settings where the indoor and outdoor
RSRP values are comparable, RSRQ can be marginally higher at the areas within the hotspots indoors.
The reason of such phenomenon is that outside environments normally have more cells on the same
frequency band and therefore the attenuation of the signal in the basement settings reduces the
interference; however, the attenuated signal of the basement setting allows RSRQ to sustain a slightly
higher level at a given RSRP as seen in Figs. 6 and 7.
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Figure 6: Geolocation simulation of RSRP in the basement market after RF optimization.
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Figure 7: Geolocation simulation of RSRQ in the basement market after RF optimization.

Overall, the predictions of the Geolocation Tool provide strong theoretical evidence of the
empirical findings: attenuation of RSRP leads to an improved coverage, and stabilisation of RSRQ
requires the use of elaborate interference-management techniques, which reminds that the need to
adopt advanced mitigation methods in dense indoor deployments is urgent.

3.4 Analysis of Intra-Band Interference

The empirical results emphasize that intra-band interference is the dominant limitation toward
improvements in RSRQ in dense cellular networks. Although RSRP is significantly boosted through
RF optimizations, e.g. azimuthal steering of antennas, Reduction in the RET or a fine-adjusted
transmit power, the gain in RSRQ is limited by the growth of neighbouring cells within the same
frequency band. The limitation is since RSRQ is a composite measure not only based on received
signal strength but on aggregate interference and noise as the RSSI. Accordingly, RSRP among
superior systems, although ensuring greater coverage, and perhaps signal penetration, is not
inherently associated with proportional increases in signal fidelity.

RSRQ tends to plateau or experience only marginal increases in intra-band interference scenarios
with a strong intra-band interference. This observation underlines the urgency of the interference-
management schemes, e.g., dynamic spectrum-allocation, coordinated-multipoint (CoMP)
transmission, or advanced interference-cancellation techniques, to ensure that the possible
enhancements in network quality measures are fully utilized.
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Conclusion

The paper presents a strict experimental investigation of the dynamics of RSRP and RSRQ in deep
indoor, dense urban situations. The empirical results show that, although RSRP can be significantly
improved by making specific RF optimization efforts, RSRQ improvements will always be inherently
limited by ubiquitous interference. A strong RSRP is essential in stabilizing RSRQ but alone, it is
impractical under the circumstances of extremely interfering ones.

The obtained data reveal a strong nonlinear relationship between RSRP and RSRQ present in the
real-life indoor environment. RSRP alone is a poor proxy of network performance because it only
measures signal strength but not the complexity of the interference patterns that are present in an
indoor network. This means that successful network planning should simultaneously consider the
RSRP as well as RSRQ and in doing so obtain a comprehensive analysis of the quality of links. In
highly populated urban areas, intra-band interference caused by neighbouring cell significantly
impairs RSRQ, which is why the importance of interference-reduction techniques is in addition to
more traditional RF optimization. Furthermore, strategic changes in the azimuth and tilt of the antenna
can provide improvements in the RSRP but the subsequent enhancement of the RSRQ is insignificant
unless the interference is addressed directly.

These findings are not only applicable to the case of LTE systems but also to the areas of 5G and
future 6G systems where the spread of a small-cell infrastructure stresses out the issues of managing
interference. Further investigation should be given to advanced technologies, such as Coordinated
Multi-Point (CoMP), interference-cancellation algorithms, and dynamic spectrum allocation, as the
complementary solutions. Also, there is potential of predictive modelling with the integration of
geolocation-based network planning tools; however, the accuracy of predictive models remains to be
empirically tested, as predictive frameworks can often predict and model RSRP with high precision
but are often less able to model the variability in RSRQ.
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