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Abstract: 
 

The constrained bi-objective Minimum Spanning Tree (MST) problem seeks to minimize edge 

weight and hop count under strict cost and delay limits. Geometry-based evolutionary algorithms, 

particularly AGE-MOEA, provide a distinctive advantage because they replace traditional crowding-

distance survival with geometry-aware scoring based on normalized Lᵖ distances. This mechanism 

explicitly models the geometric structure of the Pareto front, allowing solutions to be distributed 

evenly across irregular or non-convex trade-off surfaces, which enhances both diversity and 

convergence stability. Building on this principle, we propose a Hybrid MOCPO-AGE-MOEA that 

integrates the exploration strength of Multi-Objective Crested Porcupine Optimization (MOCPO) 

with the geometry-aware survival of AGE-MOEA. The hybrid achieves novelty through multi-level 

integration: alternating engines across iterations to balance exploration and exploitation, cross-

injecting operators for greater adaptability, and applying feasibility-first repair to guarantee valid 

spanning trees underweight and hop constraints. The contributions of this study are threefold: (i) 

formal unification of bio-inspired exploration with geometry-based survival, (ii) a feasibility-

preserving framework that ensures strict constraint satisfaction, and (iii) a balanced performance 

profile combining Pareto diversity, hop reduction, and competitive runtime. Experiments extend 

earlier benchmarks from 50-node graphs to more challenging 70-node instances, where the Hybrid 

consistently outperforms competitors by producing nearly three times higher Pareto diversity and the 

lowest hop counts, thereby confirming its scalability, robustness, and deep algorithmic strength. 
 

Keywords: Bi-objective Minimum Spanning Tree (MST), hybrid algorithm, constrained minimum 

spanning tree, Network design optimization, Pareto front diversity. 
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 الملخص: 
 

ذات الهدفين المقيدين إلى تقليل وزن الحواف وعدد القفزات ضمن حدود صارمة للتكلفة والتأخير.   (MST) تسعى مسألة الشجرة الممتدة الدنيا

، ميزةً فريدةً لأنها تستبدل أسلوب البقاء التقليدي القائم  AGE-MOEA توفر الخوارزميات التطورية القائمة على الهندسة، ولا سيما خوارزمية

المعيارية. تنُمذج هذه الآلية بشكلٍ صريح البنية الهندسية لجبهة باريتو، مما يسمح  Lᵖ على مسافة الازدحام بتقييمٍ واعٍ للهندسة يعتمد على مسافات

 على هذا بتوزيع الحلول بالتساوي عبر أسطح المقايضة غير المنتظمة أو غير المحدبة، الأمر الذي يحُسّن كلاً من التنوع واستقرار التقارب. بناءً 

، والتي تدمج قوة الاستكشاف لخوارزمية تحسين القنفذ المتوج متعددة AGE-MOEAو MOCPO ية هجينة تجمع بينالمبدأ، نقترح خوارزم

للهندسة لخوارزمية  (MOCPO) الأهداف الواعية  البقاء  التكامل متعدد  .AGE-MOEA مع ميزة  ابتكاره من خلال  النموذج الهجين  يحقق 

على المستويات: حيث يبُدلّ بين المحركات عبر التكرارات لتحقيق التوازن بين الاستكشاف والاستغلال، ويدُمج عوامل التشغيل لزيادة القدرة  

مراعاة قيود الوزن والقفز. وتتلخص إسهامات هذه الدراسة  التكيف، ويطُبّق إصلاحًا قائمًا على الجدوى أولًا لضمان صحة الأشجار الممتدة مع  

( إطار عمل يحافظ على الجدوى  2تكشاف المستوحى من الطبيعة مع البقاء القائم على الهندسة، ) ( التوحيد الرسمي للاس1في ثلاثة جوانب: )

بدقة، ) باريتو، وتقليل عدد القفزات، ووقت تشغيل تنافسي. وتوُسّع التجارب المعايير 3ويضمن استيفاء القيود  بين تنوع  ( أداء متوازن يجمع 

عقدة، حيث يتفوق النموذج الهجين باستمرار على منافسيه من  70لى حالات أكثر تحدياً مكونة من عقدة إ 50السابقة من رسوم بيانية مكونة من 

 .ةخلال إنتاج تنوع باريتو أعلى بثلاث مرات تقريباً وأقل عدد من القفزات، مما يؤكد قابليته للتوسع، ومتانته، وقوته الخوارزمية العميق
 

(، الخوارزمية الهجينة، شجرة الامتداد الأدنى المقيدة، تحسين تصميم  MSTشجرة الامتداد الأدنى ثنائية الهدف )  الكلمات المفتاحية:

 الشبكة، تنوع جبهة باريتو. 
 

 : پوختە
 

  ی سنوور   رێ ژ  هل   ەوهبکات   مهک  پۆ ه  ەیو ژمار  وارێ ل  یشێ ک  داتەدڵوهه  (MST) نڕي ب   ەدار  ني مترهک  یسنووردارکراو  یدوو ئامانج  هیشێ ک

 شهشکێ پ   اوازي ج  یکێ ، سوودAGE-MOEA یت هب ي تا  هب   ،ەيیندازهئ   یما هبن   رهس هل  ندنهسەرهپ   یکان هتمي رۆ لگه. ئ وتنه و دواک  چوونێ ت   یتوند

 .Lᵖ يیئاسا  یوداهم  ی ماهبن   رهس هل   ەيیندازهئ   ی ئاگادار  یکردن ڵي خا  هب   ەوه گرن ەد  یغڵباەرهق   یوداه م- یدي قل هت   ەی وه مان   هیگێ ج  هچونک  نهکەد

 نێ بکر  ش هداب   کسانيه  یکەيهوێ ش  هب   کانەرهس ەچار  داتەد  هگڕێ   کات،ە د  ۆت ێ پار  ەیر هب   ەيیندازهئ   هیکهات ێ پ   یلێ دۆم  یوون ڕ  هب   هزمي کان ي م  مهئ 

 ره سه . لە وهکات ەد  رزهب   کگرتنيه  یري قامگه س  مه و ه  یشن هچ ەفر  مهه  شه م هئ   هک  کردندا،هڵهمام  یکان ەقاو هناچ  اني   کانهکڕێ نا  ەرهووب ڕ  رهسهب 

 ی ن ي رکوپ ۆپ   یباشکردن   یئامانج  ەفر  یدوا هب   انهڕگ   یزێ ه  هک  نهي ک ەد  هڵکێت   ی MOCPO-AGE-MOEA یاري شن ێ پ   همێ ئ   ،يهماهبن   مهئ   یماهبن 

  هی گڕێ   هل  تێ ن ێ هەد  ست ەدهب   ی رهگە تاز  هکەدي بري . هاکاتەد  هڵکێ ت  AGE-MOEA ەيیندازهئ   ی ئاگادار  ەیوهمان   هڵ گ هل  (MOCPO) ستێ کر

ئ   انهڕ گ  ینگههاوس  ۆب   کانداەوهکردن ەدووبار  یره رانسهس   هل  کانەرهن ێ بزو  ین ۆڕي : گە وهئاست   ەفر  یکخستن يه  ی دانێ ل  یرزەد  ستغلالکردن،ي و 

 کان هدروست   ەستاندارهپ   ەدار  یشێ ک  مهک  ی کردن ي نت ەرهگ  ۆب   اتي مکاني ئ   یمهک يه  ەیوهچاککردن   یکردن ێ جهب ێ و ج  اتر، ي ز  یگونجان   ۆب   کانەرۆرات هپ ۆئ 

 هڵ گ هل  یجۆ ليۆبا  یخشهلهامب ي ئ   یدواهب   انهڕگ   یرمهف  یکخستن يه (i) :ه ن يهلا  ێ س  ەيهوهن ي ژێ تو  مهئ   یکان ييهشداره. ب پۆه  یو سنووردارکردن 

ک  یپاراستن   یکەيهوێ چوارچ (ii)  ،ەيیندازهئ   هب   مادارهبن   ەیوهمان  و  یتوند  ی ندهزامڕە   هل  داتەد  یاي ن ڵد  هتواناکان   (iii) سنووردارکردن، 

کات   پۆه  ەیوهمکردن هک  ،ۆت ێ پار  يیرۆ جهمه ه  هک  نگههاوس  یداهئ   یلي فاۆپر تاقکاتەد  هڵکێ ت   ێکڕ ب ێک  یکردن ێ جهب ێ ج  یو   کانەوهکردن ي . 

 ی کان ەرهکاب ڕ  هل  یوامەردهب   هب   دي بريها  داێي ت   هچالاکتر، ک  ێیگر  70  هینموون   ۆب   ەوهن هکەد  ژێ در  ەوێيهگر  50  یکي گراف  هل  شووترێ پ   یکان ەرەوێ پ 

  ی زێ و ه  یزێ ههو ب   دانانەبارهق   شه مهب   پ،ۆ ه  ەیژمار  ني مترهو ک  ۆتێ پار  يیرۆج همهه  یاتري ز  ەندێ ه  ێس   هیکينز  ینان ێ مههرههب   هب   ەباشتر

 ..ەوهکات ەد  استڕپشت  هیکهتمي رۆلگهئ  ڵیقوو
 

 ، ۆڕت   ین ي زاي د  یسنووردار، باشکردن   یستان هپ   ني مترهدار ک  ،هڵکێ ت   یکێ تمي رۆلگه(، ئ MSTدوو ئامانج )  یستان هپ   ني مترهک  ەدار   کليلە وشە:

 . ۆت ێ پار ەیوه شێ پ  یشن هچ همهه
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1. INTRODUCTION 
 

The design of efficient networks is a fundamental task in operations research and computer science, 

with applications in communication systems, transportation, logistics, and energy distribution. The 

minimum spanning tree (MST) is one of the most studied models in this area because it provides a 

cost-efficient way of connecting nodes in a graph. However, real-world problems rarely involve a 

single criterion. Instead, decision-makers must simultaneously consider multiple objectives such as 

minimizing construction costs, reducing delays, and improving reliability. This requirement leads to 

the bi-objective or multi-objective MST problem, which has received increasing attention in recent 

years [1] [2]. Several methods have been proposed to extend classical MST models to multi-objective 

and constrained contexts. For example, exact approaches using integer programming or ε-constraint 

formulations have been applied to bi-objective MSTs, showing their effectiveness in generating 

Pareto-optimal solutions [2] [3]. Nevertheless, such approaches are limited in scalability and often 

cannot handle larger instances [4]. Other studies investigated uncertainty within the MST framework, 

highlighting that when edge costs or delays are imprecise, the optimization process becomes 

significantly more complex [5]. These findings underline the fact that although exact formulations 

are valuable, they remain unsuitable for real-world, large-scale constrained networks. Consequently, 

much research has shifted toward evolutionary and metaheuristic algorithms. Evolutionary 

algorithms have been widely used to approximate Pareto fronts and provide flexible trade-off 

solutions [6] [7]. Time complexity analyses of such algorithms confirm their strengths but also reveal 

limitations in convergence speed and feasibility maintenance [8]. In addition, new bio-inspired 

algorithms such as artificial rabbits optimization [9] and whale optimization [10] have shown their 

effectiveness across engineering problems, further motivating their use in spanning tree optimization. 

Despite these improvements, metaheuristics frequently suffer from premature convergence, reduced 

diversity, and difficulties in balancing exploration with exploitation. 
 

To address these weaknesses, researchers have explored hybrid approaches that combine global 

exploration with problem-specific exploitation. Hybrid frameworks for spanning trees demonstrate 

significant improvements by incorporating heuristic seeding, genetic operators, or local search into 

evolutionary algorithms [7]. In addition, geometry-aware evolutionary methods have recently 

emerged as a powerful tool. Adaptive geometry-based algorithms explicitly model the shape of the 

Pareto front, enabling better distribution of solutions on irregular or non-convex trade-offs [11]. 

Moreover, new bio-inspired algorithms such as multi-objective crested porcupine optimization have 

achieved strong performance by integrating multiple operators for exploration and exploitation [12]. 

At the same time, recent advances in many-objective optimization with hybrid mechanisms confirm 

that integrating diverse forces can provide robustness and scalability [13]. Nevertheless, significant 

gaps remain. First, exact algorithms are constrained to small instances [4]. Second, existing 

evolutionary methods often lose Pareto diversity under strict feasibility rules [6], [5]. Third, although 

hybridization has improved performance, there is still a lack of integrated designs that combine 

exploration-biased bio-inspired methods with geometry-based survival strategies while also 

enforcing feasibility through repair operators. 

 
 

http://dx.doi.org/10.25098/9.2.29


            The Scientific Journal of Cihan University – Sulaimaniya        PP: 64-84 
Volume (9), Issue (2), December 2025 

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print) 
 

 

DOI: http://dx.doi.org/10.25098/9.2.29 
 

 
67 

This is 

an open 

access 

   Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0) 

In response to these challenges, this paper introduces a Hybrid MOCPO–AGE-MOEA, which 

integrates the exploration-rich operators of multi-objective crested porcupine optimization with the 

geometry-aware survival mechanisms of adaptive geometry-based evolutionary algorithms. The 

proposed method alternates between exploration and exploitation, applies operator cross-injection, 

and employs feasibility-first repair to guarantee valid spanning trees. 

The contributions of this study are threefold: 
 

• A formal problem formulation of the constrained bi-objective MST problem with hop and weight 

bounds. 

• A novel hybrid algorithm combining bio-inspired exploration and geometry-aware survival, 

supported by repair mechanisms to maintain feasibility. 

• A comprehensive experimental study on Euclidean graphs of various sizes, showing that the 

proposed method achieves superior Pareto diversity and hop minimization while maintaining 

competitive runtime. 
 

The remainder of this paper is organized as follows: Section 2 reviews related works on MST 

optimization and hybrid evolutionary algorithms. Section 3 presents the mathematical problem 

formulation, including objectives, constraints, and evaluation rules. Section 4 explain background 

knowledge. Section 5 explains the proposed Hybrid MOCPO-AGE-MOEA framework, detailing the 

operator design, hybridization strategy, and selection process. Section 6 describes the experimental 

methodology, parameter settings, and performance metrics. Section 7 presents the experimental 

results and discussions. Finally, Section 8 concludes the paper and highlights directions for future 

research. 
 

2. RELATED WORKS 
 

Research on constrained and Mult objective spanning tree problems has progressed through both 

exact formulations and evolutionary approaches. To begin with, early contributions focused on exact 

mathematical models that guarantee optimal solutions under multiple objectives. For example, 

Carvalho and Coco [3] addressed the bi-objective constrained minimum spanning tree (MST) 

problem by developing efficient formulations that balance cost and hop limits. Similarly, Carvalho 

and Ribeiro [14] introduced an exact bounded-error calibration tree approach that improved modeling 

accuracy, but such exact methods often face scalability issues when problem size increases. In 

addition, theoretical analyses have provided further insights; Shi, Neumann, and Wang [15] analyzed 

the time complexity of evolutionary algorithms for hop-constrained MST problems, showing how 

operator design influences convergence efficiency. Complementary to this, Carvalho [16] highlighted 

the importance of statistical evaluation methods when dealing with infeasible solutions in algorithmic 

experimentation, thereby improving the robustness of comparative studies. Moreover, Majumder et 

al. [5] examined Mult objective MSTs under uncertain conditions, extending the problem’s 

applicability to real-world uncertain paradigms. In terms of specific hop-constrained formulations, 

Akgün and Tansel [17] proposed Miller–Tucker–Zemlin-based constraints to model hop limits more 

effectively, while de Sousa et al. [18] developed an exact bi-objective diameter-cost spanning tree 

formulation. Transitioning from theory to application, Wang et al. [19] investigated optimal tree 

topology in submarine cable networks under latency constraints, and Yamaoka et al. [20] introduced 

http://dx.doi.org/10.25098/9.2.29
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MST-based methods for robust time-delay estimation in noisy communication systems. Additionally, 

Carvalho [21] explored complexity and relaxation techniques for hop-constrained MST problems, 

offering a deeper understanding of both theoretical and computational trade-offs. More recently, 

evolutionary computation has advanced with the introduction of dual-population strategies, as 

demonstrated by Geng et al. [22], which enhance performance in constrained many-objective 

problems. In parallel, Panichella [23] proposed improved Pareto-front modeling algorithms to 

strengthen diversity and convergence in large-scale scenarios. Qiao et al. [24] contributed scalable 

benchmark suites and algorithms for high-dimensional constrained optimization, which are crucial 

for testing new designs across diverse problem types. Finally, Zhang and Jin [25] emphasized the 

necessity of rigorous statistical evaluation of Mult objective evolutionary algorithms, confirming that 

reliable assessment frameworks are essential for advancing constrained optimization research. 

Altogether, these studies show a consistent trend: exact formulations provide valuable theoretical 

benchmarks, but scalable hybrid and evolutionary methods, supported by dual-population strategies, 

geometry-aware modeling, and rigorous statistical testing, are now essential to achieve both 

feasibility and efficiency in constrained bi-objective MST optimization. 
 

3. STUDY FRAME WORK 
 

This section defines the constrained bi-objective Minimum Spanning Tree (MST) problem and the 

mathematical formulations that guide algorithm design, ensure fair evaluation, and support 

reproducibility [4] [26] [27].  
 

                                   𝒎𝒊𝒏 𝑭(𝑻)  =  (𝒇₁(𝑻), 𝒇₂(𝑻))                                                 (1) 

Where: T = spanning tree, f₁(T) = total weight, f₂(T) = maximum hop count. 

                              𝒇𝟏(𝑻) = ∑ 𝒘(𝒖, 𝒗).
(𝒖,𝒗)∈𝑻                                                  (2) 

Where: w(u,v) = Euclidean weight of edge (u,v), T = set of tree edges. 

                                    𝒇₂(𝑻)  =  𝒎𝒂𝒙ᵥ ∈ 𝑽 𝒅𝒊𝒔𝒕_𝑩𝑭𝑺(𝒓, 𝒗; 𝑻)               (3) 

Where: r = root node, v = vertex, dist_BFS(r,v;T) = BFS distance from r to v. 

|𝑻|  =  |𝑽|  −  𝟏                 (4) 

Where: |V| = number of vertices, |T| = number of edges in tree. 

𝒇₁(𝑻)  ≤  𝑾𝒎𝒂𝒙 ,   𝒇₂(𝑻)  ≤  𝑯𝒎𝒂𝒙                          (5-6) 

Where: Wmax = maximum allowed weight, Hmax = maximum allowed hop depth. 

    𝒇𝒊𝒕(𝑻)  =  (𝒇₁(𝑻), 𝒇₂(𝑻))                                     (7) 

Where: fit(T) = fitness vector, f₁, f₂ = weight and hop objectives. 

   𝒇𝒊𝒕(𝑻)  =  (+∞, +∞)                                            (8) 

Where: +∞ = sentinel for constraint violation, ensuring dominance loss. 

𝑨 ≺  𝑩 ⇔  ∀𝒊, 𝒇𝒊(𝑨)  ≤  𝒇𝒊(𝑩)  ∧  ∃𝒋, 𝒇𝒋(𝑨)  <  𝒇𝒋(𝑩)                              (9) 

Where: A,B = two solutions, fi = objective function, i,j = indices. 

𝒛 ∗ 𝒊 =  𝒎𝒊𝒏ₓ ∈ 𝑷 𝒇𝒊(𝒙)                                           (10) 

Where: z*i = best value of objective i, P = population. 

𝒇𝒊′(𝒙)  =  (𝒇𝒊(𝒙)  −  𝒛 ∗ 𝒊) / (𝒎𝒂𝒙ⱼ 𝒇𝒊(𝒋)  −  𝒛 ∗ 𝒊)                                      (11) 

Where: fi(x) = objective value of solution x, maxⱼ fi(j) = maximum value in population. 

𝒅𝒙 = (∑ (𝒇𝒊′(𝒙))𝐩
𝒎

𝒊=𝟏
) 𝟏

𝒑⁄                                       (12) 
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Where: d(x) = distance, m = number of objectives, p = norm parameter (commonly 2, Euclidean 

distance). 

𝑺(𝒙)  =  𝝀 · (𝟏/𝒅(𝒙))  +  (𝟏 − 𝝀) · 𝒔𝒑𝒓𝒆𝒂𝒅(𝒙)                               (13) 

Where: S(x) = survival score, λ = balance factor, d(x) = distance to ideal, spread(x) = diversity 

measure. 
 

Together, these formulations define the constrained MST problem and the mechanisms underlying 

the hybrid MOCPO–AGE-MOEA. They provide a rigorous mathematical foundation for solution 

construction, evaluation, and selection, ensuring that the experimental framework is both transparent 

and reproducible. 
 

5. THE PROPOSED HYBRID OPTIMIZATION ALGORITHM 
 

As depicting from below flowchart, the proposed hybridization between MOCPO and AGE-

MOEA operates through a multi-level integration that balances exploration and exploitation in equal 

proportion (50%–50%) at every stage of the evolutionary cycle. we explored many ratios through a 

set of preliminary experiments to balance exploration and exploitation. The 50–50 configuration was 

ultimately selected because it consistently produced more stable results across different graph sizes, 

preserving both Pareto diversity (driven by MOCPO) and convergence quality (guided by AGE-

MOEA). First, the process begins with graph construction, root node selection, and a diversified 

population initialization strategy that combines greedy Kruskal-based solutions, random spanning 

trees, and BFS-biased trees. This initialization ensures that both objectives, cost minimization and 

hop efficiency, are represented from the start while also guaranteeing structural diversity. 

Subsequently, the algorithm enters its iterative phase, where the scheduling mechanism alternates 

between the two engines: during even iterations, the MOCPO module is executed, whereas during 

odd iterations, the AGE-MOEA module is activated. This alternation establishes a regular cadence, 

allowing each paradigm to influence the search process in successive generations. 
 

In the MOCPO step, the search is divided evenly between exploration and exploitation. On the 

one hand, exploration operators (Sight and Sound) account for 50% of offspring generation and 

encourage structural variety by recombining edge sets and completing them with randomized 

spanning-tree finishers. On the other hand, exploitation covers the remaining 50% and is itself 

hybridized: half of this share uses native MOCPO intensification operators (Odor and Physical), 

which gradually drive solutions toward the current best by scaling edge-adoption probabilities 

through fitness ratios and time-dependent cooling; meanwhile, the other half applies a GA-based 

fallback mechanism, performing crossover with the best feasible solution followed by light mutation 

and Kruskal completion. In contrast, the AGE-MOEA step also maintains a 50%–50% balance: half 

of the offspring are generated by native GA operations (tournament selection, crossover, and 

mutation), while the other half leverage a MOCPO intensifier, where one child is refined through 

Odor/Physical exploitation and the other is produced via GA crossover with best feasible. Thus, in 

every iteration, whether MOCPO or AGE-MOEA is the controlling engine, both exploration and 

exploitation are proportionally balanced, and moreover, each paradigm borrows operators from the 

other, ensuring cross-injection of strategies. 
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After offspring are produced, the hybrid consistently applies a feasibility-first evaluation, discarding 

infeasible solutions by assigning them infinite objective values. This is followed by non-dominated 

sorting, which organizes the population into Pareto fronts, and by AGE-style survival selection, 

which replaces NSGA-II’s crowding distance with geometry-aware scoring. In this step, the 

algorithm normalizes objectives, preserves extremes, and evaluates survival scores using Lᵖ norms 

(p≈2), thereby maintaining a well-distributed Pareto set across convex and concave fronts. The 

archive is updated accordingly, and the cycle continues until the termination condition is met. 

Through this multi-level hybridization, at the scheduler level (alternating engines), at the operator 

level (cross-injected exploration and exploitation), and at the selection level (geometry-aware 

survival), the algorithm combines the exploratory breadth and feedback-driven intensification of 

MOCPO with the geometry-adaptive preservation and refinement of AGE-MOEA. Consequently, the 

hybrid maintains diversity, converges efficiently, and respects feasibility constraints, ultimately 

yielding robust and well-spread Pareto-optimal solutions. 
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Figure 1. Flowchart of the hybrid optimization algorithm. 
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Figure 2 shows the step-by-step instructions of pseudo code for our hybrid algorithm that combines 

MOCPO and AGE-MOEA to solve the two-objective minimum spanning tree problem: 
 

First, the algorithm builds a complete Euclidean graph from the given coordinates and, then, selects 

a root according to the specified policy (Tree-Center or Tree-Edge). Next, it initializes a diverse 

population with three seeds, greedy/Kruskal (cost-lean), random/Kruskal-biased (diversity), and 

BFS-heuristic (hop-lean), and immediately evaluates each tree with respect to the root to obtain total 

weight and maximum hops; afterward, it computes the current ideal point from the best feasible 

values. Subsequently, the main loop iterates up to maximum iteration: if the iteration is even, the 

MOCPO step generates one child per parent; specifically, with probability ≈0.45 it performs 

exploration via Sight or Sound followed by randomized completion, otherwise it performs 

exploitation where, in turn, half the time it applies native Odor/Physical moves (fitness/time-scaled) 

and half the time it uses a GA fallback (crossover with the best feasible plus light mutation and 

Kruskal completion). Meanwhile, every produced child is evaluated immediately and inserted into 

the offspring set. 
 

Conversely, if the iteration is odd, the AGE-MOEA step first selects parents by tournament (k=3) 

and then, for each pair, produces two children; specifically, with probability 0.5 it follows the native 

GA path (crossover or copy, then mutation), otherwise it uses a MOCPO-intensified path where the 

first child is refined by Odor/Physical and the second is a light-GA child crossed with the best feasible. 

Then, parents and offspring are merged, duplicates are removed, and, crucially, feasibility-first non-

dominated sorting forms Pareto fronts; if the last front overflows, the fill procedure applies AGE-

MOEA survival on the last front (preserve extremes, normalize, and rank by Lᵖ proximity/spread) 

to choose survivors. Finally, the ideal point is updated and iteration statistics are logged; after all 

iterations, the algorithm extracts the final Pareto front from the archive and, ultimately, returns this 

set together with summary metrics. The following notations are used in Figure 2 (Pseudo-code of the 

hybrid algorithm): G is the input graph and r is the chosen root, with s denoting a candidate spanning 

tree. The evolving sets are POP (population), OFF (offspring), UNI (their union), FRONTS (non-

dominated layers), and PF_final (final Pareto front). Objectives are f₁ (weight) and f₂ (hops), 

constrained by W_max and H_max, while z* marks the ideal point; the search runs for MAX_ITERS 

iterations with POP_SIZE solutions, and each solution is evaluated by evaluate (s, r, W_max, 

H_max). 
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INPUT: coords or n, POP_SIZE, MAX_ITERS, W_max, H_max, root_policy ∈ {TC, TE} 

 

# --- Graph construction --- 

G   ← build_graph(coords or n) 

r   ← select_root(G, policy = root_policy) 

 

# --- Initialization --- 

POP ← init_population(G, r, POP_SIZE)                # greedy, random, BFS seeds 

for s in POP: 

    evaluate(s, r, W_max, H_max) 

ideal ← update_ideal(POP)                            # z* = best values so far 

 

# --- Main loop --- 

for it = 0 .. MAX_ITERS-1: 

    OFF ← ∅ 

 

    if it is even:                                   # ===== MOCPO step ===== 

        for parent in POP: 

            if rand() < 0.45: 

                child ← sight_or_sound(parent, POP) 

                child ← complete_with_kruskal_if_needed(child, G) 

            else: 

                if rand() < 0.5: 

                    child ← odor_or_physical(parent, POP, ideal, it, MAX_ITERS) 

                else: 

                    child ← ga_fallback(parent, best_feasible(POP)) 

            evaluate(child, r, W_max, H_max) 

            OFF ← OFF ∪ {child} 

 

    else:                                            # ===== AGE-MOEA step ===== 

        mates ← tournament(POP, k = 3) 

        for (p1, p2) in pairs(mates): 

            if rand() < 0.5: 

                (c1, c2) ← crossover_or_copy(p1, p2) 

                c1 ← mutate(c1); c2 ← mutate(c2) 

            else: 

                c1 ← odor_or_physical(p1, POP, ideal, it, MAX_ITERS) 

                c2 ← light_ga(p2, best_feasible(POP)) 

            evaluate(c1, r, W_max, H_max) 

            evaluate(c2, r, W_max, H_max) 

            OFF ← OFF ∪ {c1, c2} 
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    # --- Environmental selection --- 

    UNI    ← dedup(POP ∪ OFF) 

    fronts ← nondominated_sort(UNI, feasibility_first = True) 

    POP    ← fill_fronts(fronts, POP_SIZE, 

                         last_front_tiebreak = age_moea_survival_on_last_front(ideal)) 

 

    ideal ← update_ideal(POP) 

    log_iter(POP)                                    # PF size, avg f1, avg f2 

 

# --- Output --- 

PF_final ← pareto_front_from_history() 

return PF_final, metrics(PF_final)) 

Figure 2. Pseudo-code of the hybrid algorithm. 
 

6. EXPERIMENTAL DESIGN AND SETUP 
 

This section presents the experimental setup, including benchmarks, metrics, parameters, and 

baselines, to ensure fair and reproducible evaluation of the proposed algorithm. 
 

This study evaluated the performance of six state-of-the-art multi-objective algorithms for the bi-

objective constrained Minimum Spanning Tree problem to ensure comprehensive algorithmic 

comparison. The proposed Hybrid MOCPO-AGE-MOEA algorithm was tested against five 

established methods: MOCPO (2025), AGE-MOEA (2019), MOANA (2024), CoMMEA (2023), and 

MOMPA (2021). All algorithms were executed under identical experimental conditions to eliminate 

bias and ensure that performance differences were solely due to algorithmic design rather than 

environmental factors. The experimental design employed a systematic factorial approach with two 

root selection strategies (TC tree-center at coordinate 20,20 and TE tree-edge at coordinate 0,0) to 

evaluate robustness across different network topologies. Graph complexity was systematically varied 

across 50 sizes from 11 to 60 nodes with linear increments, and 50 independent runs were performed 

for each algorithm-configuration-size combination, resulting in 30,000 total experiments (6 

algorithms × 2 configurations × 50 graph sizes × 50 runs). All algorithms used uniform parameters 

including population size of 50, maximum iterations of 50, weight constraint of 400.0, and hop 

constraint of 40, ensuring fair comparison across identical search spaces and computational budgets. 

A comprehensive configuration table with 16 standardized parameters organized into seven 

categories including population control, constraints, hybrid blending ratios, and algorithm-specific 

settings for both MOCPO and AGE-MOEA components. These uniform parameter values ensure fair 

algorithmic comparison by eliminating configuration bias, guaranteeing that any observed 

performance differences are solely attributable to the intrinsic capabilities of each algorithm rather 

than parameter variations. 
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Table 1 Algorithm Parameters 

Group Parameter Meaning Typical 

General POP_SIZE population size 50  
MAX_ITERS iterations per run 50  
W_max,H_max hard constraints 400, 40  
root_policy TC or TE TC (default) 

Completion complete_mode Kruskal / randomized (both used) mixed 

GA crossover_rate prob. of crossover 0.9  
mutation_rate per-child mutation prob. 0.1–0.2  
tournament_k tournament size 2–3 

MOCPO explore_prob share for Sight/Sound ~0.45  
exploit_split native vs GA fallback in exploitation 50/50 

Hybrid even_iter_engine MOCPO on even iters fixed even_iter  
odd_iter_engine AGE/EA on odd iters fixed odd_iter 

AGE p_norm Minkowski p for survival 2 
 

Table 1 summarizes the key parameters used in the hybrid optimization framework, covering 

general settings, GA operators, MOCPO behavior, hybrid scheduling, and AGE survival. The general 

parameters define population size, iteration count, and feasibility constraints, while the GA 

parameters control crossover, mutation, and tournament selection. Meanwhile, MOCPO and AGE 

settings regulate the balance between exploration and exploitation, with the hybrid alternating engines 

by iteration to ensure both diversity and convergence. 
 

Table 1 Evaluation Criteria 

Metric Direction Description 

Average Pareto Front Size ↑ Number of non-dominated solutions (diversity) 

Average Execution Time ↓ Computational efficiency (seconds) 

Average Weight ↓ Cost-effectiveness of solutions 

Average Hops ↓ Communication efficiency (latency) 
 

Table 2 includes evaluation criteria assess different aspects of algorithm performance with clear 

optimization directions. Higher Pareto Front Size indicates better solution diversity and trade-off 

exploration, while lower values for the other three metrics represent superior performance in speed, 

cost, and communication efficiency respectively. The arrows (↑↓) indicate whether higher or lower 

values are preferred for each metric. 
 

This study used a three-step statistical method to make fair and reliable comparisons between the 

algorithms. First, the Friedman test was applied to detect overall performance differences across all 

metrics, since it is a non-parametric method suitable for repeated measures across multiple 

algorithms. Second, the Bonferroni correction was used to adjust pairwise comparisons, thereby 

reducing the risk of Type I errors when interpreting significance across multiple algorithm pairs. 

Third, the Cohen’s d (α) alpha was calculated to quantify the practical importance of performance 

differences beyond statistical significance. For interpretation, Cohen’s d < 0.2 was considered 
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negligible, 0.2–0.5 small, 0.5–0.8 medium, and ≥0.8 large. Collectively, this framework ensures that 

the reported results capture both statistical reliability and practical impact. 
 

7. Performance Evaluation and Critical Analysis 
 

This section covers the experimental results and statistical analyses, highlighting the comparative 

performance of the Hybrid MOCPO-AGE-MOEA against five state-of-the-art algorithms in terms of 

Pareto diversity, hop minimization, runtime efficiency, and solution weight. 
 

Figure 3 presents the Friedman test results expressed as −log₁₀(p-values) across four evaluation 

metrics: Pareto front size, execution time, average weight, and average hops. The dashed line 

indicates the p = 0.05 significance threshold, and all bars rise dramatically above this line, with values 

ranging from 10⁻⁴⁰ to 10⁻⁴⁸. This demonstrates that the observed performance differences among 

algorithms are extremely significant and not due to random variation. Pareto front size shows the 

strongest evidence with p = 1.33×10⁻⁴⁸, execution time is nearly as strong with p = 5.16×10⁻⁴⁷, and 

both average weight (p = 7.81×10⁻⁴⁴) and average hops (p = 8.27×10⁻⁴⁰) also indicate highly 

significant differences. Overall, the figure confirms that all four metrics provide systematic and 

meaningful evidence of algorithmic variation. 

 

 
Figure 3. Friedman Test Significance by Metric (−log₁₀ p-value) 
 

Figure 4 shows the χ² statistics for the same four evaluation metrics, with larger values reflecting 

stronger evidence of differences across algorithms. The results range from χ² = 193.15 to 234.23, 

confirming that each metric exhibits substantial variation. Annotations highlight the relative 

performance, where the Hybrid MOCPO-AGE-MOEA achieved the best Pareto front size and lowest 

hop count, while MOCPO dominated execution time and average weight. In contrast, MOMPA was 

weakest in diversity, CoMMEA performed poorly in runtime, and the Hybrid showed a trade-off with 

heavier weights despite excelling in hops. Together, the results illustrate a clear division of strengths: 

MOCPO is efficient and lightweight, while the Hybrid is superior in diversity and latency reduction, 

with MOMPA and CoMMEA emerging as the weakest performers. 
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Figure 4. Friedman Test χ² by Metric (Higher = Stronger Evidence of Differences) 
 

The Friedman ranking analysis in Figure 5 provides a comprehensive comparison of algorithmic 

performance across multiple evaluation metrics. The Hybrid MOCPO-AGE-MOEA achieved the top 

rank in Pareto front size (1.00) and average hops (1.00), demonstrating its ability to generate diverse 

sets of trade-off solutions while simultaneously minimizing communication delay, two properties that 

are particularly important for constrained MST applications in time-sensitive domains. In addition, 

the Hybrid maintained a competitive runtime (1.66), nearly identical to MOCPO’s best score (1.64), 

indicating that its improvements in diversity and latency reduction do not incur significant 

computational overhead. The only dimension where the Hybrid ranked lower was average weight 

(5.98), reflecting a deliberate trade-off between cost efficiency and enhanced solution diversity with 

reduced latency. By contrast, MOCPO performed best in weight and runtime but exhibited weaker 

results in diversity and hops, while other algorithms such as CoMMEA and MOMPA consistently 

ranked lower across most metrics. Overall, the Friedman analysis confirms that the Hybrid provides 

the most balanced and practically scalable performance, offering a strong combination of efficiency, 

diversity, and latency minimization that outperforms competing approaches. 
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Figure 5. Friedman Ranking Analysis of Algorithms Across Performance Metrics 
 

Table 3 shows that the Hybrid MOCPO-AGE-MOEA achieved the best overall rank (2.41), 

confirming its superiority across most metrics. MOCPO followed closely in second place (2.62), 

highlighting its strength in runtime and weight despite weaker diversity. The remaining algorithms, 

AGEMOEA, MOANA, MOMPA, and CoMMEA, ranked lower, indicating less balanced 

performance overall. 
 

Bonferroni analysis confirmed strong pairwise differences. Out of 15 comparisons, 14 were 

significant for Pareto size, all 15 for runtime, nine for weight, and 13 for hops. Non-significant cases 

occurred mainly between AGEMOEA and others (MOCPO, MOANA, CoMMEA). 
 

Table 3. Overall Rankings 

Rank Algorithm Avg. Rank 

1 Hybrid MOCPO–AGE-MOEA 2.41 

2 MOCPO 2.62 

3 AGEMOEA 3.61 

4 MOANA 3.76 

5 MOMPA 4.28 

6 CoMMEA 4.33 
 

Descriptive results (Table 4) confirmed that the Hybrid produced the largest Pareto size (151.85), 

nearly three times competitors, but at the cost of higher weight (178.64). It also achieved the lowest 
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hops (11.33), while MOCPO remained fastest (1.72s). CoMMEA achieved competitive hops but 

suffered from extreme runtime (20.60s). 
 

Table 4. Performance Results for 50-Node Graph Instances 

Algorithm Avg. Pareto ↑ Avg. Hops ↓ Avg. Time ↓ Avg. Weight ↓ 

Hybrid 151.85 11.33 1.77 178.64 

MOCPO 50.00 14.75 1.72 158.29 

AGEMOEA 50.00 14.29 7.56 160.13 

MOANA 47.25 14.73 4.51 158.65 

MOMPA 39.23 14.55 2.33 162.20 

CoMMEA 43.06 13.02 20.60 161.81 

 

 
Figure 6. Descriptive Performance (Mean) for 50-Node Instances 
 

Figure 6 and Table 4 clearly show that the Hybrid MOCPO–AGE-MOEA dominates in Pareto 

front size with an average of 151.85, which is nearly three times greater than all other algorithms. It 

also achieves the lowest hops (11.33), reflecting superior communication efficiency, though at the 

expense of higher weight (178.64) compared to the others. MOCPO provides the best performance 

in terms of execution time (1.72s) and weight (158.29), but its Pareto diversity is limited to 50. By 

contrast, CoMMEA demonstrates competitive hop reduction (13.02) but suffers from extremely high 

runtime (20.60s), highlighting its lack of practical efficiency. 
 

Table 5 and Figure 7 present the performance results for 70-node graph instances and reveal 

consistent patterns with even clearer contrasts among the algorithms. The Hybrid algorithm obviously 

dominates in Pareto front size (145.96), producing nearly triple the diversity of competitors, while 

also achieving the lowest hop count (10.99), highlighting superior communication efficiency. This 

comes at the cost of slightly higher weight (170.65) and moderate runtime (2.07s). By contrast, 

MOCPO is the fastest (1.29s) but fails to provide complete results for weight and hops, indicating 

instability at this scale. AGEMOEA and MOANA deliver balanced outcomes with reasonable 

weights (161.54 and 151.91, respectively) but are constrained by high hop counts (≈14.3-14.5). 
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MOMPA performs competitively in runtime (1.76s) yet suffers from the highest hop values (15.63). 

Finally, CoMMEA demonstrates incomplete results and extreme runtime (15.95s), limiting its 

practical usability despite achieving a moderate Pareto size (43.52). 
 

Table 5. Performance Results for 70-Node Graph Instances 

Algorithm Avg. Pareto ↑ Avg. Hops ↓ Avg. Time ↓ Avg. Weight ↓ 

Hybrid 145.956 10.999 2.065 170.646 

MOCPO 49.937 - 1.292 - 

AGEMOEA 47.142 14.530 6.375 161.539 

MOANA 47.335 14.301 5.520 151.908 

MOMPA 36.484 15.627 1.757 169.675 

CoMMEA 43.517 - 15.947 - 

 

 
Figure 7. Performance (Mean) for 70-Node Instances Across all Algorithm 
 

Cohen’s d analysis (Table 5) showed that execution time (1.433s) and Pareto front size (1.386) 

had large practical importance, while weight (0.196) and hops (0.278) were statistically significant 

but practically small. 
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Table 5. Effect Sizes 

Metric Mean |d| Interpretation 

Execution time 1.433 Large 

Pareto size 1.386 Large 

Avg. hops 0.278 Small 

Avg. weight 0.196 Small 

 

7.2 Algorithmic Innovation 
 

The key novelty of this work lies in the development of a hybrid evolutionary framework that 

strategically integrates the exploration capacity of MOCPO with the geometry-based survival strategy 

of AGE-MOEA. Unlike traditional evolutionary methods that often rely on crowding distance to 

maintain diversity, AGE-MOEA employs a geometry-aware approach: survival is guided by 

normalized Lᵖ distances to the ideal point, preserving extreme solutions and ensuring a uniform 

spread across convex, concave, and irregular Pareto fronts. This mechanism directly addresses the 

loss of diversity and premature convergence that frequently occur in constrained MST optimization. 

Building on this principle, the proposed hybrid alternates MOCPO and AGE engines at successive 

iterations, employs operator-level cross-injection to strengthen adaptability, and applies feasibility-

first repair to guarantee that hop and weight constraints are satisfied. The 50-50 ratio between 

MOCPO and AGE was determined through extensive preliminary experiments, where this 

configuration consistently achieved stable and well-balanced results across graph sizes. As a result, 

the hybrid achieves three major contributions: (i) uniting bio-inspired exploration with geometry-

based survival in a single framework, (ii) introducing a feasibility-preserving repair mechanism that 

maintains constraint satisfaction without compromising solution quality, and (iii) delivering a 

balanced performance profile that combines Pareto diversity, hop minimization, and competitive 

runtime. Importantly, scalability experiments extended beyond the standard 50-node benchmarks to 

larger 70-node instances, where the Hybrid continued to dominate competitors by producing nearly 

triple Pareto front diversity and the lowest hop counts, thereby confirming its robustness, deep 

algorithmic strength, and suitability for real-world network design tasks. 
 

A main result is the Hybrid algorithm’s ability to reduce hop count, with an average of 11.33 

compared to 13-15 achieved by competing methods. This improvement can be directly linked to the 

integration of MOCPO’s exploitation-oriented operators (Odor and Physical) with AGE-MOEA’s 

geometry-preserving survival, which together drive the search toward topologies that minimize 

communication delay. Although this came with a modest trade-off in weight (178.64 versus ~158 for 

MOCPO), the benefit is clear: lower hops correspond to reduced latency, which is often more critical 

in time-sensitive applications such as telecommunications, sensor networks, and distributed 

computing. 
 

Runtime efficiency further confirms the practicality of the proposed approach. Despite its more 

complex operator schedule, the Hybrid maintained near-identical runtime to MOCPO (1.77s vs. 

1.72s), showing that its gains in diversity and hops do not introduce significant computational 

overhead. This scalability is essential for real-world scenarios, where solutions must be generated 
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quickly even as network size grows. By contrast, methods such as CoMMEA achieved competitive 

hop values but required excessive runtime (20.60s), undermining their viability in practice. 
 

Overall, the results highlight a clear division of strengths among the tested algorithms: MOCPO is 

strong in runtime and weight but weak in diversity, CoMMEA performs well in hops but fails in 

efficiency, while the Hybrid uniquely balances all four-evaluation metrics. This balance is what 

elevates the Hybrid as the most effective algorithm in the study, it not only generates feasible and 

efficient solutions but also expands the decision space available to practitioners. The combination of 

broad Pareto coverage, low latency, and competitive runtime establishes the Hybrid MOCPO-AGE-

MOEA as a practical and scalable solution for constrained MST optimization, with significant 

potential for deployment in real network design tasks. 
 

8. CONCLUSION  
 

This study addressed the constrained bi-objective Minimum Spanning Tree problem by 

introducing a Hybrid MOCPO-AGE-MOEA that integrates exploration-driven operators with 

geometry-aware survival and feasibility-first repair. Extensive experiments on Euclidean graphs 

demonstrated that the Hybrid consistently outperforms state-of-the-art algorithms in two critical 

aspects: Pareto front diversity and hop minimization. On average, it generated nearly three times more 

non-dominated solutions than its closest competitor and reduced hops to 11.3, offering clear benefits 

for latency-sensitive networks. Although MOCPO remained strongest in execution time and weight, 

the Hybrid delivered a more balanced performance overall, maintaining competitive runtime while 

substantially expanding the decision space available to network designers. 
 

These findings confirm that the Hybrid provides a superior trade-off between diversity, efficiency, 

and scalability, making it the most effective method among those tested. Beyond benchmark results, 

its ability to generate broad and high-quality Pareto sets ensures practical value for applications in 

communication, IoT, and logistics networks where both cost and responsiveness are critical. Future 

research will extend this work by testing the Hybrid on dynamic and real-world network instances, 

exploring parallelization strategies, and investigating adaptive mechanisms for operator scheduling 

to further improve efficiency. 
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