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Abstract:

The constrained bi-objective Minimum Spanning Tree (MST) problem seeks to minimize edge
weight and hop count under strict cost and delay limits. Geometry-based evolutionary algorithms,
particularly AGE-MOEA, provide a distinctive advantage because they replace traditional crowding-
distance survival with geometry-aware scoring based on normalized Lr distances. This mechanism
explicitly models the geometric structure of the Pareto front, allowing solutions to be distributed
evenly across irregular or non-convex trade-off surfaces, which enhances both diversity and
convergence stability. Building on this principle, we propose a Hybrid MOCPO-AGE-MOEA that
integrates the exploration strength of Multi-Objective Crested Porcupine Optimization (MOCPO)
with the geometry-aware survival of AGE-MOEA. The hybrid achieves novelty through multi-level
integration: alternating engines across iterations to balance exploration and exploitation, cross-
injecting operators for greater adaptability, and applying feasibility-first repair to guarantee valid
spanning trees underweight and hop constraints. The contributions of this study are threefold: (i)
formal unification of bio-inspired exploration with geometry-based survival, (ii) a feasibility-
preserving framework that ensures strict constraint satisfaction, and (iii) a balanced performance
profile combining Pareto diversity, hop reduction, and competitive runtime. Experiments extend
earlier benchmarks from 50-node graphs to more challenging 70-node instances, where the Hybrid
consistently outperforms competitors by producing nearly three times higher Pareto diversity and the
lowest hop counts, thereby confirming its scalability, robustness, and deep algorithmic strength.

Keywords: Bi-objective Minimum Spanning Tree (MST), hybrid algorithm, constrained minimum
spanning tree, Network design optimization, Pareto front diversity.
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1. INTRODUCTION

The design of efficient networks is a fundamental task in operations research and computer science,
with applications in communication systems, transportation, logistics, and energy distribution. The
minimum spanning tree (MST) is one of the most studied models in this area because it provides a
cost-efficient way of connecting nodes in a graph. However, real-world problems rarely involve a
single criterion. Instead, decision-makers must simultaneously consider multiple objectives such as
minimizing construction costs, reducing delays, and improving reliability. This requirement leads to
the bi-objective or multi-objective MST problem, which has received increasing attention in recent
years [1][2]. Several methods have been proposed to extend classical MST models to multi-objective
and constrained contexts. For example, exact approaches using integer programming or g-constraint
formulations have been applied to bi-objective MSTs, showing their effectiveness in generating
Pareto-optimal solutions [2] [3]. Nevertheless, such approaches are limited in scalability and often
cannot handle larger instances [4]. Other studies investigated uncertainty within the MST framework,
highlighting that when edge costs or delays are imprecise, the optimization process becomes
significantly more complex [5]. These findings underline the fact that although exact formulations
are valuable, they remain unsuitable for real-world, large-scale constrained networks. Consequently,
much research has shifted toward evolutionary and metaheuristic algorithms. Evolutionary
algorithms have been widely used to approximate Pareto fronts and provide flexible trade-off
solutions [6] [7]. Time complexity analyses of such algorithms confirm their strengths but also reveal
limitations in convergence speed and feasibility maintenance [8]. In addition, new bio-inspired
algorithms such as artificial rabbits optimization [9] and whale optimization [10] have shown their
effectiveness across engineering problems, further motivating their use in spanning tree optimization.
Despite these improvements, metaheuristics frequently suffer from premature convergence, reduced
diversity, and difficulties in balancing exploration with exploitation.

To address these weaknesses, researchers have explored hybrid approaches that combine global
exploration with problem-specific exploitation. Hybrid frameworks for spanning trees demonstrate
significant improvements by incorporating heuristic seeding, genetic operators, or local search into
evolutionary algorithms [7]. In addition, geometry-aware evolutionary methods have recently
emerged as a powerful tool. Adaptive geometry-based algorithms explicitly model the shape of the
Pareto front, enabling better distribution of solutions on irregular or non-convex trade-offs [11].
Moreover, new bio-inspired algorithms such as multi-objective crested porcupine optimization have
achieved strong performance by integrating multiple operators for exploration and exploitation [12].
At the same time, recent advances in many-objective optimization with hybrid mechanisms confirm
that integrating diverse forces can provide robustness and scalability [13]. Nevertheless, significant
gaps remain. First, exact algorithms are constrained to small instances [4]. Second, existing
evolutionary methods often lose Pareto diversity under strict feasibility rules [6], [5]. Third, although
hybridization has improved performance, there is still a lack of integrated designs that combine
exploration-biased bio-inspired methods with geometry-based survival strategies while also
enforcing feasibility through repair operators.
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In response to these challenges, this paper introduces a Hybrid MOCPO-AGE-MOEA, which
integrates the exploration-rich operators of multi-objective crested porcupine optimization with the
geometry-aware survival mechanisms of adaptive geometry-based evolutionary algorithms. The
proposed method alternates between exploration and exploitation, applies operator cross-injection,
and employs feasibility-first repair to guarantee valid spanning trees.

The contributions of this study are threefold:

e A formal problem formulation of the constrained bi-objective MST problem with hop and weight
bounds.

e A novel hybrid algorithm combining bio-inspired exploration and geometry-aware survival,
supported by repair mechanisms to maintain feasibility.

e A comprehensive experimental study on Euclidean graphs of various sizes, showing that the
proposed method achieves superior Pareto diversity and hop minimization while maintaining
competitive runtime.

The remainder of this paper is organized as follows: Section 2 reviews related works on MST
optimization and hybrid evolutionary algorithms. Section 3 presents the mathematical problem
formulation, including objectives, constraints, and evaluation rules. Section 4 explain background
knowledge. Section 5 explains the proposed Hybrid MOCPO-AGE-MOEA framework, detailing the
operator design, hybridization strategy, and selection process. Section 6 describes the experimental
methodology, parameter settings, and performance metrics. Section 7 presents the experimental
results and discussions. Finally, Section 8 concludes the paper and highlights directions for future
research.

2. RELATED WORKS

Research on constrained and Mult objective spanning tree problems has progressed through both
exact formulations and evolutionary approaches. To begin with, early contributions focused on exact
mathematical models that guarantee optimal solutions under multiple objectives. For example,
Carvalho and Coco [3] addressed the bi-objective constrained minimum spanning tree (MST)
problem by developing efficient formulations that balance cost and hop limits. Similarly, Carvalho
and Ribeiro [14] introduced an exact bounded-error calibration tree approach that improved modeling
accuracy, but such exact methods often face scalability issues when problem size increases. In
addition, theoretical analyses have provided further insights; Shi, Neumann, and Wang [15] analyzed
the time complexity of evolutionary algorithms for hop-constrained MST problems, showing how
operator design influences convergence efficiency. Complementary to this, Carvalho [16] highlighted
the importance of statistical evaluation methods when dealing with infeasible solutions in algorithmic
experimentation, thereby improving the robustness of comparative studies. Moreover, Majumder et
al. [5] examined Mult objective MSTs under uncertain conditions, extending the problem’s
applicability to real-world uncertain paradigms. In terms of specific hop-constrained formulations,
Akgiin and Tansel [17] proposed Miller—Tucker—Zemlin-based constraints to model hop limits more
effectively, while de Sousa et al. [18] developed an exact bi-objective diameter-cost spanning tree
formulation. Transitioning from theory to application, Wang et al. [19] investigated optimal tree
topology in submarine cable networks under latency constraints, and Yamaoka et al. [20] introduced
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MST-based methods for robust time-delay estimation in noisy communication systems. Additionally,
Carvalho [21] explored complexity and relaxation techniques for hop-constrained MST problems,
offering a deeper understanding of both theoretical and computational trade-offs. More recently,
evolutionary computation has advanced with the introduction of dual-population strategies, as
demonstrated by Geng et al. [22], which enhance performance in constrained many-objective
problems. In parallel, Panichella [23] proposed improved Pareto-front modeling algorithms to
strengthen diversity and convergence in large-scale scenarios. Qiao et al. [24] contributed scalable
benchmark suites and algorithms for high-dimensional constrained optimization, which are crucial
for testing new designs across diverse problem types. Finally, Zhang and Jin [25] emphasized the
necessity of rigorous statistical evaluation of Mult objective evolutionary algorithms, confirming that
reliable assessment frameworks are essential for advancing constrained optimization research.
Altogether, these studies show a consistent trend: exact formulations provide valuable theoretical
benchmarks, but scalable hybrid and evolutionary methods, supported by dual-population strategies,
geometry-aware modeling, and rigorous statistical testing, are now essential to achieve both
feasibility and efficiency in constrained bi-objective MST optimization.

3. STUDY FRAME WORK

This section defines the constrained bi-objective Minimum Spanning Tree (MST) problem and the

mathematical formulations that guide algorithm design, ensure fair evaluation, and support
reproducibility [4] [26] [27].

min F(T) = (f1(T), f2(T)) (1)
Where: T = spanning tree, fi(T) = total weight, £2(T) = maximum hop count.
FU(T) = Smer W, v) )
Where: w(u,v) = Euclidean weight of edge (u,v), T = set of tree edges.
f2(T) = max, € Vdist BFS(r,v;T) 3)
Where: r = root node, v = vertex, dist BFS(r,v;T) = BFS distance from r to v.
IT| = V] -1 “4)
Where: |[V| = number of vertices, |T| = number of edges in tree.
f1(T) < Wmax, f,(T) < Hmax (5-6)
Where: Wmax = maximum allowed weight, Hmax = maximum allowed hop depth.
Fit(T) = (f2(1), fo(T)) (7)
Where: fit(T) = fitness vector, fi, f2 = weight and hop objectives.
fit(T) = (+oo,+0) ®)
Where: +oo = sentinel for constraint violation, ensuring dominance loss.
A < B < Vi, fi(A) < fi(B) A 3),fj(A) < fj(B) 9
Where: A,B = two solutions, fi = objective function, 1,j = indices.
z*i = miny € P fi(x) (10)
Where: z*i = best value of objective i, P = population.
fi'(x) = (fi(x) — z+1iQ) / (max; fi(j) — z 1) (11)
Where: fi(x) = objective value of solution x, max; fi(j) = maximum value in population.
dx = (Y (fi'()p) Vp (12)
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Where: d(x) = distance, m = number of objectives, p = norm parameter (commonly 2, Euclidean
distance).

S(x) = A-(1/d(x)) + (1 —4) - spread(x) (13)
Where: S(x) = survival score, A = balance factor, d(x) = distance to ideal, spread(x) = diversity
measure.

Together, these formulations define the constrained MST problem and the mechanisms underlying
the hybrid MOCPO-AGE-MOEA. They provide a rigorous mathematical foundation for solution
construction, evaluation, and selection, ensuring that the experimental framework is both transparent
and reproducible.

5. THE PROPOSED HYBRID OPTIMIZATION ALGORITHM

As depicting from below flowchart, the proposed hybridization between MOCPO and AGE-
MOEA operates through a multi-level integration that balances exploration and exploitation in equal
proportion (50%—-50%) at every stage of the evolutionary cycle. we explored many ratios through a
set of preliminary experiments to balance exploration and exploitation. The 50-50 configuration was
ultimately selected because it consistently produced more stable results across different graph sizes,
preserving both Pareto diversity (driven by MOCPO) and convergence quality (guided by AGE-
MOEA). First, the process begins with graph construction, root node selection, and a diversified
population initialization strategy that combines greedy Kruskal-based solutions, random spanning
trees, and BFS-biased trees. This initialization ensures that both objectives, cost minimization and
hop efficiency, are represented from the start while also guaranteeing structural diversity.
Subsequently, the algorithm enters its iterative phase, where the scheduling mechanism alternates
between the two engines: during even iterations, the MOCPO module is executed, whereas during
odd iterations, the AGE-MOEA module is activated. This alternation establishes a regular cadence,
allowing each paradigm to influence the search process in successive generations.

In the MOCPO step, the search is divided evenly between exploration and exploitation. On the
one hand, exploration operators (Sight and Sound) account for 50% of offspring generation and
encourage structural variety by recombining edge sets and completing them with randomized
spanning-tree finishers. On the other hand, exploitation covers the remaining 50% and is itself
hybridized: half of this share uses native MOCPO intensification operators (Odor and Physical),
which gradually drive solutions toward the current best by scaling edge-adoption probabilities
through fitness ratios and time-dependent cooling; meanwhile, the other half applies a GA-based
fallback mechanism, performing crossover with the best feasible solution followed by light mutation
and Kruskal completion. In contrast, the AGE-MOEA step also maintains a 50%—-50% balance: half
of the offspring are generated by native GA operations (tournament selection, crossover, and
mutation), while the other half leverage a MOCPO intensifier, where one child is refined through
Odor/Physical exploitation and the other is produced via GA crossover with best feasible. Thus, in
every iteration, whether MOCPO or AGE-MOEA is the controlling engine, both exploration and
exploitation are proportionally balanced, and moreover, each paradigm borrows operators from the
other, ensuring cross-injection of strategies.
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After offspring are produced, the hybrid consistently applies a feasibility-first evaluation, discarding
infeasible solutions by assigning them infinite objective values. This is followed by non-dominated
sorting, which organizes the population into Pareto fronts, and by AGE-style survival selection,
which replaces NSGA-II’s crowding distance with geometry-aware scoring. In this step, the
algorithm normalizes objectives, preserves extremes, and evaluates survival scores using LP norms
(p=2), thereby maintaining a well-distributed Pareto set across convex and concave fronts. The
archive is updated accordingly, and the cycle continues until the termination condition is met.
Through this multi-level hybridization, at the scheduler level (alternating engines), at the operator
level (cross-injected exploration and exploitation), and at the selection level (geometry-aware
survival), the algorithm combines the exploratory breadth and feedback-driven intensification of
MOCPO with the geometry-adaptive preservation and refinement of AGE-MOEA. Consequently, the
hybrid maintains diversity, converges efficiently, and respects feasibility constraints, ultimately
yielding robust and well-spread Pareto-optimal solutions.
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Figure 1. Flowchart of the hybrid optimization algorithm.
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Figure 2 shows the step-by-step instructions of pseudo code for our hybrid algorithm that combines
MOCPO and AGE-MOEA to solve the two-objective minimum spanning tree problem:

First, the algorithm builds a complete Euclidean graph from the given coordinates and, then, selects
a root according to the specified policy (Tree-Center or Tree-Edge). Next, it initializes a diverse
population with three seeds, greedy/Kruskal (cost-lean), random/Kruskal-biased (diversity), and
BFS-heuristic (hop-lean), and immediately evaluates each tree with respect to the root to obtain total
weight and maximum hops; afterward, it computes the current ideal point from the best feasible
values. Subsequently, the main loop iterates up to maximum iteration: if the iteration is even, the
MOCPO step generates one child per parent; specifically, with probability ~0.45 it performs
exploration via Sight or Sound followed by randomized completion, otherwise it performs
exploitation where, in turn, half the time it applies native Odor/Physical moves (fitness/time-scaled)
and half the time it uses a GA fallback (crossover with the best feasible plus light mutation and
Kruskal completion). Meanwhile, every produced child is evaluated immediately and inserted into
the offspring set.

Conversely, if the iteration is odd, the AGE-MOEA step first selects parents by tournament (k=3)
and then, for each pair, produces two children; specifically, with probability 0.5 it follows the native
GA path (crossover or copy, then mutation), otherwise it uses a MOCPO-intensified path where the
first child is refined by Odor/Physical and the second is a light-GA child crossed with the best feasible.
Then, parents and offspring are merged, duplicates are removed, and, crucially, feasibility-first non-
dominated sorting forms Pareto fronts; if the last front overflows, the fill procedure applies AGE-
MOEA survival on the last front (preserve extremes, normalize, and rank by LP proximity/spread)
to choose survivors. Finally, the ideal point is updated and iteration statistics are logged; after all
iterations, the algorithm extracts the final Pareto front from the archive and, ultimately, returns this
set together with summary metrics. The following notations are used in Figure 2 (Pseudo-code of the
hybrid algorithm): G is the input graph and r is the chosen root, with s denoting a candidate spanning
tree. The evolving sets are POP (population), OFF (offspring), UNI (their union), FRONTS (non-
dominated layers), and PF final (final Pareto front). Objectives are fi (weight) and f: (hops),
constrained by W_max and H_max, while z* marks the ideal point; the search runs for MAX ITERS
iterations with POP_SIZE solutions, and each solution is evaluated by evaluate (s, r, W_max,
H max).
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INPUT: coords or n, POP_SIZE, MAX ITERS, W_max, H max, root policy € {TC, TE}

# --- Graph construction ---
G <« build graph(coords or n)
r <« select root(G, policy = root_policy)

# --- Initialization ---
POP « init_population(G, r, POP_SIZE) # greedy, random, BFS seeds
for s in POP:
evaluate(s, r, W_max, H_max)
ideal « update ideal(POP) # z* = best values so far

# --- Main loop ---
forit=0.. MAX ITERS-I:
OFF < @

if it is even: # ===== MOCPO step =====
for parent in POP:
if rand() < 0.45:
child « sight or sound(parent, POP)
child < complete with kruskal if needed(child, G)
else:
if rand() <0.5:
child «— odor or physical(parent, POP, ideal, it, MAX ITERS)
else:
child < ga fallback(parent, best_feasible(POP))
evaluate(child, r, W_max, H max)
OFF « OFF U {child}

else: # ===== AGE-MOEA step =====
mates «<— tournament(POP, k = 3)
for (p1, p2) in pairs(mates):
if rand() <0.5:
(cl, c2) «<— crossover_or _copy(pl, p2)
cl « mutate(cl); c2 « mutate(c2)
else:
cl <« odor or physical(pl, POP, ideal, it, MAX ITERS)
c2 « light ga(p2, best feasible(POP))
evaluate(cl, r, W_max, H max)
evaluate(c2, r, W_max, H max)
OFF <« OFF U {cl, c2}

DOI: http://dx.doi.org/10.25098/9.2.29

73

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)



http://dx.doi.org/10.25098/9.2.29

The Scientific Journal of Cihan University — Sulaimaniya PP: 64-84
Volume (9), Issue (2), December 2025
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

# --- Environmental selection ---
UNI  « dedup(POP U OFF)
fronts «— nondominated sort(UNI, feasibility first = True)
POP «fill fronts(fronts, POP_SIZE,
last front tiebreak = age moea survival on last front(ideal))

ideal < update ideal(POP)
log_iter(POP) # PF size, avg f1, avg 2

# --- Output ---
PF final « pareto_front from_history()
return PF_final, metrics(PF_final))

Figure 2. Pseudo-code of the hybrid algorithm.
6. EXPERIMENTAL DESIGN AND SETUP

This section presents the experimental setup, including benchmarks, metrics, parameters, and
baselines, to ensure fair and reproducible evaluation of the proposed algorithm.

This study evaluated the performance of six state-of-the-art multi-objective algorithms for the bi-
objective constrained Minimum Spanning Tree problem to ensure comprehensive algorithmic
comparison. The proposed Hybrid MOCPO-AGE-MOEA algorithm was tested against five
established methods: MOCPO (2025), AGE-MOEA (2019), MOANA (2024), COMMEA (2023), and
MOMPA (2021). All algorithms were executed under identical experimental conditions to eliminate
bias and ensure that performance differences were solely due to algorithmic design rather than
environmental factors. The experimental design employed a systematic factorial approach with two
root selection strategies (TC tree-center at coordinate 20,20 and TE tree-edge at coordinate 0,0) to
evaluate robustness across different network topologies. Graph complexity was systematically varied
across 50 sizes from 11 to 60 nodes with linear increments, and 50 independent runs were performed
for each algorithm-configuration-size combination, resulting in 30,000 total experiments (6
algorithms x 2 configurations x 50 graph sizes x 50 runs). All algorithms used uniform parameters
including population size of 50, maximum iterations of 50, weight constraint of 400.0, and hop
constraint of 40, ensuring fair comparison across identical search spaces and computational budgets.
A comprehensive configuration table with 16 standardized parameters organized into seven
categories including population control, constraints, hybrid blending ratios, and algorithm-specific
settings for both MOCPO and AGE-MOEA components. These uniform parameter values ensure fair
algorithmic comparison by eliminating configuration bias, guaranteeing that any observed
performance differences are solely attributable to the intrinsic capabilities of each algorithm rather
than parameter variations.
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Table 1 Algorithm Parameters
Group Parameter Meaning Typical
General POP_SIZE population size 50
MAX ITERS iterations per run 50
W _max,H max | hard constraints 400, 40
root_policy TC or TE TC (default)
Completion | complete mode | Kruskal / randomized (both used) mixed
GA crossover rate prob. of crossover 0.9
mutation rate per-child mutation prob. 0.1-0.2
tournament_k tournament size 2-3
MOCPO explore prob share for Sight/Sound ~0.45
exploit_split native vs GA fallback in exploitation | 50/50
Hybrid even_iter_engine | MOCPO on even iters fixed even_iter
odd iter engine | AGE/EA on odd iters fixed odd _iter
AGE p_norm Minkowski p for survival 2

Table 1 summarizes the key parameters used in the hybrid optimization framework, covering
general settings, GA operators, MOCPO behavior, hybrid scheduling, and AGE survival. The general
parameters define population size, iteration count, and feasibility constraints, while the GA
parameters control crossover, mutation, and tournament selection. Meanwhile, MOCPO and AGE
settings regulate the balance between exploration and exploitation, with the hybrid alternating engines
by iteration to ensure both diversity and convergence.

Table 1 Evaluation Criteria
Metric
Average Pareto Front Size | 1

Direction | Description

Number of non-dominated solutions (diversity)

Average Execution Time | |
Average Weight l
Average Hops l

Computational efficiency (seconds)

Cost-effectiveness of solutions

Communication efficiency (latency)

Table 2 includes evaluation criteria assess different aspects of algorithm performance with clear
optimization directions. Higher Pareto Front Size indicates better solution diversity and trade-off
exploration, while lower values for the other three metrics represent superior performance in speed,
cost, and communication efficiency respectively. The arrows (1)) indicate whether higher or lower
values are preferred for each metric.

This study used a three-step statistical method to make fair and reliable comparisons between the
algorithms. First, the Friedman test was applied to detect overall performance differences across all
metrics, since it is a non-parametric method suitable for repeated measures across multiple
algorithms. Second, the Bonferroni correction was used to adjust pairwise comparisons, thereby
reducing the risk of Type I errors when interpreting significance across multiple algorithm pairs.
Third, the Cohen’s d (o)) alpha was calculated to quantify the practical importance of performance
differences beyond statistical significance. For interpretation, Cohen’s d < 0.2 was considered
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negligible, 0.2—0.5 small, 0.5-0.8 medium, and >0.8 large. Collectively, this framework ensures that
the reported results capture both statistical reliability and practical impact.

7. Performance Evaluation and Critical Analysis

This section covers the experimental results and statistical analyses, highlighting the comparative
performance of the Hybrid MOCPO-AGE-MOEA against five state-of-the-art algorithms in terms of
Pareto diversity, hop minimization, runtime efficiency, and solution weight.

Figure 3 presents the Friedman test results expressed as —logio(p-values) across four evaluation
metrics: Pareto front size, execution time, average weight, and average hops. The dashed line
indicates the p = 0.05 significance threshold, and all bars rise dramatically above this line, with values
ranging from 107* to 10~*%. This demonstrates that the observed performance differences among
algorithms are extremely significant and not due to random variation. Pareto front size shows the
strongest evidence with p = 1.33x107*, execution time is nearly as strong with p = 5.16x10™*, and
both average weight (p = 7.81x107*) and average hops (p = 8.27x107%°) also indicate highly
significant differences. Overall, the figure confirms that all four metrics provide systematic and
meaningful evidence of algorithmic variation.

Friedman Test Significance by Metric (—logio p-value)
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Figure 3. Friedman Test Significance by Metric (—logio p-value)

Figure 4 shows the y* statistics for the same four evaluation metrics, with larger values reflecting
stronger evidence of differences across algorithms. The results range from y*> = 193.15 to 234.23,
confirming that each metric exhibits substantial variation. Annotations highlight the relative
performance, where the Hybrid MOCPO-AGE-MOEA achieved the best Pareto front size and lowest
hop count, while MOCPO dominated execution time and average weight. In contrast, MOMPA was
weakest in diversity, COMMEA performed poorly in runtime, and the Hybrid showed a trade-off with
heavier weights despite excelling in hops. Together, the results illustrate a clear division of strengths:
MOCPO is efficient and lightweight, while the Hybrid is superior in diversity and latency reduction,
with MOMPA and COMMEA emerging as the weakest performers.
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Friedman Test y? by Metric (Higher = Stronger Evidence of Differences)
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Figure 4. Friedman Test x* by Metric (Higher = Stronger Evidence of Differences)

The Friedman ranking analysis in Figure 5 provides a comprehensive comparison of algorithmic
performance across multiple evaluation metrics. The Hybrid MOCPO-AGE-MOEA achieved the top
rank in Pareto front size (1.00) and average hops (1.00), demonstrating its ability to generate diverse
sets of trade-off solutions while simultaneously minimizing communication delay, two properties that
are particularly important for constrained MST applications in time-sensitive domains. In addition,
the Hybrid maintained a competitive runtime (1.66), nearly identical to MOCPOQO’s best score (1.64),
indicating that its improvements in diversity and latency reduction do not incur significant
computational overhead. The only dimension where the Hybrid ranked lower was average weight
(5.98), reflecting a deliberate trade-off between cost efficiency and enhanced solution diversity with
reduced latency. By contrast, MOCPO performed best in weight and runtime but exhibited weaker
results in diversity and hops, while other algorithms such as COMMEA and MOMPA consistently
ranked lower across most metrics. Overall, the Friedman analysis confirms that the Hybrid provides
the most balanced and practically scalable performance, offering a strong combination of efficiency,
diversity, and latency minimization that outperforms competing approaches.

DOI: http://dx.doi.org/10.25098/9.2.29

@08

77



http://dx.doi.org/10.25098/9.2.29

§J[~C1U.SJ,«*"'

X
A

The Scientific Journal of Cihan University — Sulaimaniya PP: 64-84
Volume (9), Issue (2), December 2025
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Pareto Front Size . Execution Time 5.84

&

3 0 P > > ® > 0 > » ™
o P_GQ’@\O(’/ W& o C‘)\f\‘l\?’ oo ot P@g\:@t W o o

5.98 Average Weight Average Hops

4.89 5.03

I Q > o Io ) >
o¢ 9.4 N & \i o oY
© \\5\on (/0‘“\:\ O"‘ Y\\! P@(’)‘\

W

o > &>
o® \1\0‘?\“ U)g\\“

Y
ot
Wi @““ W W

Figure 5. Friedman Ranking Analysis of Algorithms Across Performance Metrics

Table 3 shows that the Hybrid MOCPO-AGE-MOEA achieved the best overall rank (2.41),
confirming its superiority across most metrics. MOCPO followed closely in second place (2.62),
highlighting its strength in runtime and weight despite weaker diversity. The remaining algorithms,
AGEMOEA, MOANA, MOMPA, and CoMMEA, ranked lower, indicating less balanced
performance overall.

Bonferroni analysis confirmed strong pairwise differences. Out of 15 comparisons, 14 were
significant for Pareto size, all 15 for runtime, nine for weight, and 13 for hops. Non-significant cases
occurred mainly between AGEMOEA and others (MOCPO, MOANA, COMMEA).

Table 3. Overall Rankings

Rank | Algorithm Avg. Rank
1 Hybrid MOCPO-AGE-MOEA | 2.41
2 MOCPO 2.62
3 AGEMOEA 3.61
4 MOANA 3.76
5 MOMPA 4.28
6 CoMMEA 4.33

Descriptive results (Table 4) confirmed that the Hybrid produced the largest Pareto size (151.85),
nearly three times competitors, but at the cost of higher weight (178.64). It also achieved the lowest
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hops (11.33), while MOCPO remained fastest (1.72s). COMMEA achieved competitive hops but
suffered from extreme runtime (20.60s).

Table 4. Performance Results for 50-Node Graph Instances

Algorithm | Avg. Pareto 1 | Avg. Hops | | Avg. Time | | Avg. Weight |
Hybrid 151.85 11.33 1.77 178.64
MOCPO 50.00 14.75 1.72 158.29
AGEMOEA | 50.00 14.29 7.56 160.13
MOANA 47.25 14.73 4.51 158.65
MOMPA 39.23 14.55 233 162.20
CoMMEA | 43.06 13.02 20.60 161.81
180 -
160 - m - ] B
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Figure 6. Descriptive Performance (Mean) for 50-Node Instances

Figure 6 and Table 4 clearly show that the Hybrid MOCPO-AGE-MOEA dominates in Pareto
front size with an average of 151.85, which is nearly three times greater than all other algorithms. It
also achieves the lowest hops (11.33), reflecting superior communication efficiency, though at the
expense of higher weight (178.64) compared to the others. MOCPO provides the best performance
in terms of execution time (1.72s) and weight (158.29), but its Pareto diversity is limited to 50. By
contrast, COMMEA demonstrates competitive hop reduction (13.02) but suffers from extremely high
runtime (20.60s), highlighting its lack of practical efficiency.

Table 5 and Figure 7 present the performance results for 70-node graph instances and reveal
consistent patterns with even clearer contrasts among the algorithms. The Hybrid algorithm obviously
dominates in Pareto front size (145.96), producing nearly triple the diversity of competitors, while
also achieving the lowest hop count (10.99), highlighting superior communication efficiency. This
comes at the cost of slightly higher weight (170.65) and moderate runtime (2.07s). By contrast,
MOCPO is the fastest (1.29s) but fails to provide complete results for weight and hops, indicating
instability at this scale. AGEMOEA and MOANA deliver balanced outcomes with reasonable
weights (161.54 and 151.91, respectively) but are constrained by high hop counts (=14.3-14.5).
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MOMPA performs competitively in runtime (1.76s) yet suffers from the highest hop values (15.63).
Finally, COMMEA demonstrates incomplete results and extreme runtime (15.95s), limiting its
practical usability despite achieving a moderate Pareto size (43.52).

Table 5. Performance Results for 70-Node Graph Instances

145.96

Algorithm | Avg. Pareto 1 | Avg. Hops | | Avg. Time | | Avg. Weight |
Hybrid 145.956 10.999 2.065 170.646

MOCPO 49.937 - 1.292 -

AGEMOEA | 47.142 14.530 6.375 161.539
MOANA 47.335 14.301 5.520 151.908
MOMPA 36.484 15.627 1.757 169.675
CoMMEA | 43.517 - 15.947 -
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Figure 7. Performance (Mean) for 70-Node Instances Across all Algorithm

Cohen’s d analysis (Table 5) showed that execution time (1.433s) and Pareto front size (1.386)
had large practical importance, while weight (0.196) and hops (0.278) were statistically significant
but practically small.
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Table 5. Effect Sizes

Metric Mean [d| | Interpretation
Execution time | 1.433 Large
Pareto size 1.386 Large
Avg. hops 0.278 Small
Avg. weight 0.196 Small

7.2 Algorithmic Innovation

The key novelty of this work lies in the development of a hybrid evolutionary framework that
strategically integrates the exploration capacity of MOCPO with the geometry-based survival strategy
of AGE-MOEA. Unlike traditional evolutionary methods that often rely on crowding distance to
maintain diversity, AGE-MOEA employs a geometry-aware approach: survival is guided by
normalized Lr distances to the ideal point, preserving extreme solutions and ensuring a uniform
spread across convex, concave, and irregular Pareto fronts. This mechanism directly addresses the
loss of diversity and premature convergence that frequently occur in constrained MST optimization.
Building on this principle, the proposed hybrid alternates MOCPO and AGE engines at successive
iterations, employs operator-level cross-injection to strengthen adaptability, and applies feasibility-
first repair to guarantee that hop and weight constraints are satisfied. The 50-50 ratio between
MOCPO and AGE was determined through extensive preliminary experiments, where this
configuration consistently achieved stable and well-balanced results across graph sizes. As a result,
the hybrid achieves three major contributions: (i) uniting bio-inspired exploration with geometry-
based survival in a single framework, (ii) introducing a feasibility-preserving repair mechanism that
maintains constraint satisfaction without compromising solution quality, and (iii) delivering a
balanced performance profile that combines Pareto diversity, hop minimization, and competitive
runtime. Importantly, scalability experiments extended beyond the standard 50-node benchmarks to
larger 70-node instances, where the Hybrid continued to dominate competitors by producing nearly
triple Pareto front diversity and the lowest hop counts, thereby confirming its robustness, deep
algorithmic strength, and suitability for real-world network design tasks.

A main result is the Hybrid algorithm’s ability to reduce hop count, with an average of 11.33
compared to 13-15 achieved by competing methods. This improvement can be directly linked to the
integration of MOCPO’s exploitation-oriented operators (Odor and Physical) with AGE-MOEA’s
geometry-preserving survival, which together drive the search toward topologies that minimize
communication delay. Although this came with a modest trade-off in weight (178.64 versus ~158 for
MOCPO), the benefit is clear: lower hops correspond to reduced latency, which is often more critical
in time-sensitive applications such as telecommunications, sensor networks, and distributed
computing.

Runtime efficiency further confirms the practicality of the proposed approach. Despite its more
complex operator schedule, the Hybrid maintained near-identical runtime to MOCPO (1.77s vs.
1.72s), showing that its gains in diversity and hops do not introduce significant computational
overhead. This scalability is essential for real-world scenarios, where solutions must be generated
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quickly even as network size grows. By contrast, methods such as COMMEA achieved competitive
hop values but required excessive runtime (20.60s), undermining their viability in practice.

Overall, the results highlight a clear division of strengths among the tested algorithms: MOCPO is
strong in runtime and weight but weak in diversity, COMMEA performs well in hops but fails in
efficiency, while the Hybrid uniquely balances all four-evaluation metrics. This balance is what
elevates the Hybrid as the most effective algorithm in the study, it not only generates feasible and
efficient solutions but also expands the decision space available to practitioners. The combination of
broad Pareto coverage, low latency, and competitive runtime establishes the Hybrid MOCPO-AGE-
MOEA as a practical and scalable solution for constrained MST optimization, with significant
potential for deployment in real network design tasks.

8. CONCLUSION

This study addressed the constrained bi-objective Minimum Spanning Tree problem by
introducing a Hybrid MOCPO-AGE-MOEA that integrates exploration-driven operators with
geometry-aware survival and feasibility-first repair. Extensive experiments on Euclidean graphs
demonstrated that the Hybrid consistently outperforms state-of-the-art algorithms in two critical
aspects: Pareto front diversity and hop minimization. On average, it generated nearly three times more
non-dominated solutions than its closest competitor and reduced hops to 11.3, offering clear benefits
for latency-sensitive networks. Although MOCPO remained strongest in execution time and weight,
the Hybrid delivered a more balanced performance overall, maintaining competitive runtime while
substantially expanding the decision space available to network designers.

These findings confirm that the Hybrid provides a superior trade-off between diversity, efficiency,
and scalability, making it the most effective method among those tested. Beyond benchmark results,
its ability to generate broad and high-quality Pareto sets ensures practical value for applications in
communication, [oT, and logistics networks where both cost and responsiveness are critical. Future
research will extend this work by testing the Hybrid on dynamic and real-world network instances,
exploring parallelization strategies, and investigating adaptive mechanisms for operator scheduling
to further improve efficiency.
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