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Accurate forecasting of electricity energy requirements has become critical for current energy
systems, which are facing increasing challenges due to industrial development, population growth
and the integration of green energy. The research evaluates the capacity of machine learning and deep
learning algorithms to forecast demand of electricity energy consumption using dataset information
from central electricity control office of Iraqi Kurdistan Region Government (KRG). Electricity
energy consumption data analysis requires predictive models that are more sophisticated than
traditional methods such as Autoregressive Integrated Moving Average (ARIMA) and exponential
sequences, as these methods fail to deal with complex nonlinear patterns and high-frequency
oscillations. Therefore, this study presents deep learning models using Long Short-Term Memory
(LSTM) and Recurrent Neural Network (RNN), where the test results on the electricity energy data
from KRG showed the superiority of the LSTM model in terms of accuracy and stability compared
to RNN, the data was analyzed using multiple performance measures such as Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) to confirm the efficiency of the proposed model. The
results show LSTM superior performance than the RNN model based on the metrics provided, as the
RMSE (187.25) and MAE (139.78) values are lower compared to the RNN (RMSE = 230.34, MAE
= 232.276), indicating that LSTM forecasts are more accurate with fewer errors. In addition, the
coefficient of determination (R?) of the LSTM model (0.961) is higher than that of RNN (0.941)
Finally, this model can be applied in intelligent energy systems to improve load management
efficiency and reduce waste.

Abstract:

Keywords: Electricity Energy Demand Forecasting, LSTM, RNN, Machine Learning, Deep
Learning, Forecasting.
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1. Introduction

Energy consumption forecasting has become increasingly important for better managing energy
usage and optimizing demand response strategies. In large scale, the efficient management of urban
areas and energy consumption in buildings is the major challenge for the future. [1].

Accurate scalable and timely forecasting methods are essential for the world to handle escalating
energy demand from industrialization and population growth as well as renewable energy
deployment. Reputable energy demand predictions allow improved grid operations and minimize
operational costs that support sustainability through alternative energy systems [2].

Throughout numerous years the energy sector depended on three traditional predictive models
including ARIMA together with exponential smoothing and seasonal decomposition models.
Ordinary statistical prediction models perform well within limited circumstances yet they cannot
provide reliable outcomes when processing nonlinear data with high-frequency changes and
complicated seasonal patterns which characterize modern energy consumption [3].

Machine learning in time series is a branch of artificial intelligence that focuses on analyzing time-
related data to predict future trends or detect patterns. This technology is used in areas of predicting
energy consumption [4].

Deep learning models particularly Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM) demonstrate superior performance in forecasting applications because they learn
sophisticated temporal patterns while handling changing patterns in data. The models demonstrate
better performance than traditional methods particularly when they receive sufficient training data
with numerous features [5].

The effectiveness of deep learning models depends heavily on input data requirements while their
success also depends on suitable feature selection because this process advances both performance
and generalization capabilities [6 ].

2. Literature Review

Khan et al. developed a new power cost forecast which implemented multi-head self-attention
mechanisms together with Convolutional Neural Networks (CNNs). The researchers applied their
proposed model to Ontario energy market datasets from 2020 while obtaining outstanding results
through best average Mean Absolute Percentage Error (MAPE) of 1.75% and Root Mean Square
Error (RMSE) of 0.0085. This research proved the capability of integrating state-of-the-art machine
learning algorithms for power price forecasting to deliver accurate results suitable for real-world
energy market applications [7].

The error-compensation model developed by Ghimire et al. integrates Long Short-Term Memory
(LSTM) networks, Convolutional Neural Networks (CNN) along with Variational Mode
Decomposition (VMD) algorithms for predicting half-hourly electricity prices. These advanced
algorithms received a fresh configuration to enhance forecasting capabilities. The researchers
validated their solution through the accuracy results which indicated substantial forecast
advancements according to the Legates and McCabe Index versus benchmark models [8].
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Biligili et al. implemented four predictive models which included ANFIS-GP, ANFIS-SC, ANFIS-
FCM as well as LSTM for Turkey's energy consumption forecasting while assessing their predictive
abilities. LSTM demonstrated the most successful performance according to the study results and
yielded a 1.91% MAPE measurement. Results proved that LSTM surpasses ANFIS-based models
because ANFIS-based models delivered MAPE values of 4.47%, 3.21% and 2.34%. The research
showed that LSTM succeeded in anticipated energy consumption trends while proving suitable for
Turkish energy market applications [9].

Kuo et al. presented a short-term EP prediction system by incorporating CNN technology into
LSTM architecture and applying it to real EP dataset. The model produced superior performance than
SVM, RF, MLP, CNN and LSTM when measured by MAE at 8.84. The predictability of the model
proved higher through its MAE value of 8.84 which exceeded LSTM (9.82), CNN (9.80), MLP
(9.86), RF (9.20), and SVM (28.98) respectively [10].

The CNN-LSTM model built by Heidarpanah et al. served for EP forecasting in Iran's electricity
market. The CNN-LSTM model received performance evaluation through its comparison with
Multivariate Linear Regression (MLR), SVM, ANN, ANFIS, and ANN-Genetic Algorithm. Their
research showed CNN-LSTM provided the most suitable solution because it demonstrated superior
robustness compared to the MLR and SVM models unable to handle EP time-series oscillations [11].

Farsi et al. proposed an electricity load consumption and power consumption prediction system
based on Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) networks
and PLCNet. Malaysian hourly load consumption data and daily power consumption data from
Germany formed the basis of the research. The authors determined the hybrid PLCNet model
provided superior performance than other models by showing substantial accuracy gains through an
enhancement from 83.17% to 91.18% for German data and reaching 98.23% for Malaysian data.
Research evidence demonstrates that hybrid models have potential to boost accuracy measurements
across different energy markets [12].

Khafaf et al. Proposed Long Short-Term Memory (LSTM) model to forecast electricity
consumption for three- and fifteen-days energy demand for different energy load across each month
in the year. The research utilized machine learning approaches for time series prediction, employing
the LSTM model and introducing an innovative approach to transform time into a feature for the
training phase to enhance performance. LSTM demonstrate a strong architecture for both short and
median forecasting. Results shows that how to better manage peak energy demand with MAPE at
3.15% [13].

Azzone et al. They propose a new modelling approach that incorporates trend, seasonality and
weather conditions, as explicative variables in a shallow Neural Network with an autoregressive
feature, by emphasizing probabilistic forecasts and utilizing illustrative variables such as direction,
seasonality, and weather conditions. They introduce A novel model utilizing a shallow neural network
with a self-regressive characteristic, integrating trend, seasonality, and meteorological parameters as
determinants of prediction. Outstanding outcomes in the rigorous forecasting of energy consumption
were achieved with a one-year test cohort (daily data from New England, US), demonstrating the
model's superiority over conventional models. [14]
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Mahjoub et al. They compare three machine learning algorithms (LSTM, GRU, Drop-GRU) for the
prediction of short-term energy consumption utilizing time series data, with the objective of
enhancing energy management and minimizing waste. Energy consumption data from select French
cities were utilized in a time series model, employing three machine learning algorithms (LSTM,
GRU, Drop-GRU) to generate forecasts and evaluate their efficacy. LSTM forecasts can be utilized
for proactive decision-making in electrical load control, particularly when consumption surpasses
allowable thresholds, hence enhancing power quality and equipment maintenance. Their results
indicated that the Drop-GRU was superior to the GRU and the LSTM. [15]

Ghojogh et al. This paper elucidates recurrent neural networks (RNN) and LSTM networks,
addressing issues of vanishing and exploding gradients in long-term dependencies, along with
recommended remedies such as semi-fixed weight arrays and portal cells in LSTM. The paper
commences with the dynamic system and temporal reverse propagation of RNNs, then addressing
solutions like leak units and echo networks, and concluding with an in-depth elucidation of LSTM
gates and cells. This study serves as an extensive instructional resource on RNN and LSTM,
emphasizing the challenges and solutions in modelling long-term dependencies. [16]

3. Background Theory

The Figure (1) methodology uses raw data from a CSV file which contains Date Time and Demand
columns during its initial data preprocessing phase. A specific format is applied to read the Date Time
column to maintain correct date presentation while processing data with day-first date organization.
Data processing on the Date Time column allows chronological sorting that maintains proper time
series arrangement for analysis.

The data receives Min-Max scaling normalization before the model building process where
sequences are created for LSTM and RNN. The data separates into training which contains 80% of
data while the remaining 20% goes to test mode. The design of the LSTM model incorporates 16
t0256 units in its LSTM layer and a dense output layer that applies an Adam optimizer with an MSE
loss function. The training process continued for 50-100 epochs while checking for overfitting risks.
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Figure 1. Model Methodology
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3.1 Dataset Description

The data set consists of 4596 rows with two columns: Date Time and Demand. The Date Time
column is the observation date of energy demand, and the Demand column is the energy demand for
the respective date.

1. Date Time: Initially of object type, this column contains the timestamp of the energy demand data.
2. Demand: This column has integer values for the energy demand in megawatt (MW) units.

The descriptive statistics reveal a description of the Demand column, providing useful information
such as the mean, standard deviation, minimum, maximum, and percentiles.

1. Count: The Demand column contains 4596 non-null values, confirming that there are no missing
values in the data set.

. Mean: The average energy demand is 4131.96 MW.

. Standard Deviation: The figures for demand have a deviation of 1318.39 MW units from the mean.

. Min and Max: The lowest demand is 1647, and the highest recorded demand is 7658 MW.

. Percentiles: 25th, 50th (median), and 75th percentiles indicate that the distribution of demand is
rather scattered, ranging between 3166.5 MW and 4952.25 MW.

N =~ W N

3.2. Feature Engineering and modeling

Feature engineering is one of the most important steps in the methodology. In general, it is the
process and transforming the features for a modeling problem. A feature is a measurable aspect of a
phenomenon which is relevant to the prediction. Features should be carefully aggregated to improve
the performance of the model. In time-series problems, it is important to extract and select the right
features that capture the relevant variables and patterns of the observed phenomenon. For LSTM
model analysis, we are conducting feature engineering by extracting day, monthly, and yearly trends
from the "Datetime " column. This includes creating features such as day of the month, month and
year, along with the original demand values. These engineered features will help the LSTM model
capture temporal patterns and improve forecasting accuracy. As show in table 1. This domain
knowledge guides the construction of new features to test, often in an experimental way the data is
4596 daily, 660 weeks and 151 months.

Table 1 Date Time indexing and extracting features

Date Time Demand Year month day
0 01/02/2012 3111 2012 2 1
1 02/02/2012 3022 2012 2 2
03/02/2012 2841 2012 2 3
4593 29/08/2024 5140 2024 8 29
4594 30/08/2024 4815 2024 8 30
4595 31/08/2024 4976 2024 8 31
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3.3. LSTM Model Configuration

An essential component of long-term networks, the LSTM (Long Short-Term Memory) cell's
structural structure is seen in Figure (2). The cell is made up of a number of primary gateways, such
as the input gate, which chooses which fresh data should be stored, the output gate, which chooses
which information should be discarded, and the forget gate. This manages the data that is forwarded
to the following stage. To control the information flow, these gates use activation functions like Tanh
and Sigmoid. Point-wise multiplication and point-wise addition are used to describe in-cell
computations, which help the cell avoid the vanishing gradient issue that traditional neural networks
face and preserve significant information over time. Because of their intricate design, LSTM cells
process information efficiently. Sequential data such as energy demand forecasting or time series
analysis.

In addition to the hidden state h(t) and the state of cell ¢c(t—1), the image includes the LSTM cell's
primary gates, which are the (ft) forgetfulness gateway, the (it) input gate, and the (Ot) output
gateway. An overview of the information flow within the cell is provided by the input, which is also
known as x(t). Machine translation and speech recognition are two applications that benefit from this
methodology.

LSTM Cell Architecture

The following figure illustrates the internal operations of a single LSTM unit, highlighting the
Forget, Update, and Output gates, along with their associated computations.

Ce1 ‘ ®ft © G ' ® Ct
— .
f, &t t %
o tanh o
Figs i h

X¢ Forget Update

Figure (2) General structure of LSTM model [19]
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3.3.1 Forget Gate

Each LSTM cell consists of several gates. The most widely known are the forget gate, the input
gate, and the output gate. The forget gate first takes the element-wise multiplication of the previous
cell state and the output of the forget gate. Next, a value between 0 and 1 is forced by applying the
sigmoid activation function, deciding which information from the previous cell state will be
discarded. Thus, the forget gate is an important gate regarding memory information. In an LSTM-
based system, some use cases make a better performance by forgetting quickly the previous
information at some points, while some cases require a better memory of even small differences in
two adjacent inputs The forget gate plays a role in convincingly learning long-range dependencies,
and striking a proper balance between overfitting and redundancy problems, determines whether data
should be removed from the cell state. The equation for the forget gate is:

St= GO Tht —=LXETFDE) oo, (1)

where:

o Wy : symbolizes the forget gate's weight matrix.

e [hi_q,X{]: indicates that the current input and the prior concealed state have been
concatenated.
o by :Is the Forget Gate biased.

o: is the activation function of the sigmoid.

3.3.2 Input Gate

Among the four gates in a long short-term memory cell, the input gate is the one that navigates
when new information should be introduced. While the forget gate controls the component-wise scale
of the cell state, the input gate enables learning immediately from the latest available inputs with
element-wise control over the introduction of new values to the cell state. The input gate prominently
uses an element-wise multiplication operation. While the individual components of the incoming and
cell state vectors can be high, their element-wise multiplication keeps the balance of the overall scale
between the new values and the existing state. Important information is added to the cell state by the
input gate. The data is first controlled by the sigmoid function, and then it is remembered using inputs
h _(t-1) and x_t in a fashion similar to the forget gate. After that, a vector with an output range of -1
to +1 is created using the tanh function, which contains every conceivable value from ht-1 and x t.
Lastly, the vector values are multiplied by the prescribed values to acquire the pertinent information.
The equation for the input gate is:

=0 Wi-[ht —LX]THDI) o (2)

e Wi is the weight matrix for the input gate. xt: Current input
e ht—1: Previous hidden state. ct—1: Previous cell state
e )i is the bias term for the input gate.

The candidate cell state (gt) is computed
gt=tanh (Wg: [ht—1,Xt]HDE) ..oorrii e 3)
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3.3.3 Output Gate

Information is stored in the cell state that is potentially useful and can be slightly modified or
preserved by the gates.

The output gate of an LSTM is the mechanism by which a recurrent neural network cell decides
what to output at a time step. The output at each hidden unit is a nonlinear, saturating function of the
product of the activation value of that unit and its output weights. Output gates also play a role in
moving information back to input layers in sequence generation tasks. A similar mechanism is at play
in the output gate of an LSTM. The job of the output gate is to govern the flow of information in a
recurrent neural network from the layer with LSTM cells to the next layer or the output.

the output gate is a central factor in deciding the behavior of the LSTM cell, similar to the effect
of input gates on the hidden gate in a multiplicative LSTM. The output gate plays a crucial role in the
articulation of the model actions and demonstrates the delicate balance that emerges in how a long-
term sequence memory is organized into relevant, actionable outputs. Ample experimental validation
of this hypothesis is provided throughout a set of common LSTM model evaluations. Finally, a
simple, bi-directional attention mechanism with clearer interpretative value is presented to compute
the Output Gate Activation.

The equation for the input output is:

Ot=G(WoO [ht—1,Xt]HD0). ... 4)

The hidden state (4¢) is then computed as

ht=0t(tANN(CL) .. .veit it (5)
where:

e Wo is the weight matrix for the output gate. ct: New cell state
e bo is the bias term for the output gate. ht: New hidden state (also the output of the LSTM cell)
e ¢ — Sigmoid activation function

3.3.4 Cell State Update
The equation for the cell state update is:

ct=ftll ct —1+itll ¢ ~t

e o is the sigmoid activation function, tanh is the hyperbolic tangent activation function.
e (O denotes element-wise multiplication,
e [ht—1, xt] is the concatenation of the previous hidden state and the current input

Table (2) provides a short description of the layers used in the LSTM model. Each layer is designed
to take and process the sequential data with some specific settings of units, activation function, and
output shape. The LSTM layer is the most important part of the model that acquires temporal
dependencies in the input sequences, and the Dense layer provides the final output prediction.
Knowing the structures and parameters of these layers facilitates the interpretation of the model's

performance and workings.
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Table 2. LSTM Model Configuration

Unit
Layer Sllll:lpse Activation Function | Output Shape
16,32,64,128,256 (batch_size,
LSTM L ReL =
STM Layer units eLU 16,32,64,128,256)
Dense Layer 1 unit (batch_size, 1)
3.4. RNN Model Structure

This Figure (3) show with an emphasis on hidden weights and units, the image displays a diagram
illustrating the architecture of a recurrent neural network (RNN). Weights, X inputs, Y outputs, and
hidden units h are examples of major components. The connections between hidden units at various
time steps, such as ht—1, ht, and ht+1, depict the iterative process and demonstrate how the inputs
Xt—1, Xt, and Xt+1 impact them. Additionally, elements like "unfold" are mentioned, which show
how the network is being deployed over time.

Redesigned RNN Architecture

)Y (RZ K%

at-v

RNN ol ___ t > t+1)

Figure (3) General structure of RNN model [20]
RNN Unfolded in Time:

RNNs process sequences one element at a time, maintaining a hidden state that is updated at each
time step. When you "unfold" an RNN, you visualize each time step explicitly.

e RNN Components: x: Input vector, h: Hidden state vector, o: Output vector, (U, W, V): Weight
matrices

3.4.1 Hidden state update:
RE)=tanhWH(t —1)FUX (1) oo e e e e e e e e
(7)

¢ h(t): hidden state at time t, h(t—1): previous hidden state, x(t): input at time t
e W: hidden-to-hidden weight matrix, U: input-to-hidden weight matrix
e tanh: activation function (commonly used)
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3.4.2 Output computation
O(£)=SoftMaX (VI(L)) «ennreeiiee e e e (8)

e 0o(t): output at time t, V: hidden-to-output weight matrix
e SoftMax: used to get a probability distribution over the output

The Simple RNN model architecture is shown in Table (3) which depicts the Simple RNN model
architecture, its layers, respective units or shapes, activation functions, and output shapes. The Simple
RNN layer is used to handle temporal dependencies in the input sequence, and the Dense layer gives
the final output prediction. All these layers handle different things in sequential data processing, from
pattern capture to output prediction.

Table 3. RNN Model Structure

Units Activation
L tput Sh
ayer Shape Function Output Shape
imple RNN
Simple 16,32,64,128,256units | Relu (batch_size, 16,32,64,128,256)
Layer -
Dense Layer | 1 unit - (batch_size, 1)

3.5. Training Parameters

The key training parameters used in the model appear in Table (4) to control different training
features including number of epochs, batch size, optimization method and loss function. The training
procedure occurs more than 100 times as the entire dataset passes through the model. The model
weight updating process occurs after processing each batch size value set by default. The Adam
optimizer functions as the weight adjustment method during training because it demonstrates
remarkable efficiency in gradient-based optimization. Mean Abustle Error (MAE) and Root Mean
Squared Error (RMSE) functions as the loss metric since it is a traditional regression selection for
minimizing the squares of actual and predicted value discrepancies. The model benefits from data
shuffling that enables random mixing of training data at epoch beginnings to enhance its ability to
predict unknown data.

Table 4. Deep Learning Training Parameters

Parameter Value
Epochs 100 epochs
batch_size 16,32,64,128,256
Optimizer Adam optimizer
loss_function MAE,RMSE
Shuffle True
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4. Results and Discussions

The following sections provide a cautious analysis of the forecasting models and training results,
including LSTM and RNN, each model's performance is contrasted using training curves, observing
their ability to learn and generalize from previous data. A rigorous comparison of the models by
critical performance metrics such as MAE, RMSE, and R? is also provided. This is followed by a
comparison of our study with similar research in the field, illustrating several forecasting methods
and their ability to predict electricity demand. The comparison draws the superiority of the models
that have been employed in this research and offers knowledge on how these can be utilized for real
energy markets.

4.1. LSTM Training Results

The figure (4) presents the training curve for the LSTM model which depicts both the training loss
and validation loss over 100, we use stops training function to stop validation loss when doesn't
improve for 5 consecutive epochs. The training loss drops quickly at the beginning because the model
absorbs the data patterns effectively. The model demonstrates a major drop in performance which
shows it effectively identifies the key relationships within the data. The training loss (blue line)
alongside validation loss (orange line) reaches tiny values before maintaining this steady point at
zero. The model has successfully minimized training errors to such an extent that it stops overfitting.
The model shows effective generalization ability across unseen data because the training loss matches
closely with the validation loss. The model achieved satisfactory results by successfully learning

time-series patterns in the data because its loss values stayed at consistent low levels.
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Figure 4. LSTM Training Results

DOI: http://dx.doi.org/10.25098/9.1.29
@O0

73

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/9.1.29

The Scientific Journal of Cihan University — Sulaimaniya PP: 62-81
Volume (9), Issue (1), June 2025
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

4.2. RNN Training Results

The training curve of RNN in Figure (5) shows both training loss and validation loss over 100
epochs. Similar to the training curve of LSTM, training loss has a steep drop-off in the first few
epochs before it plateaus at a point close to a low value. This is an indication that the model picks up
the significant patterns in the data quickly during early training.

But unlike the LSTM model, there is a small oscillation in the validation loss, especially after the
initial steep drop. Such small oscillations in the validation loss during the course of training may
indicate some instability in the model's performance or responsiveness to small changes in the
validation set. Despite these small oscillations, both training and validation loss values are low and
continue to converge with progressing training.

Model Training and Validation Loss
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Figure 5. RNN Training Results

Figure (6) shows the fluctuation in the demand for the date from February 2. 2012 to 31/08/2024.
We can see that the data is a bit cyclic and projects no trend or seasonal pattern. The plot shows that
the peak energy consumption was around December (2019), and the minimum energy consumption
was around Apr 2012.
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Figure 6. energy consumption according to daily

The Figure (7) shows electricity demand data measured in megawatts over several years, starting
from 2012 to 2024. It can be seen that demand has experienced marked fluctuations during this period,
rising and falling between different years. In some years such as 2014 and 2018, demand seems to
have peaked, while in others such as 2016 and 2020, it may have declined significantly Average
demand during this period shows relative stability, with a general trend of increasing as the years
progress, especially as 2024 approaches. These changes may reflect factors such as population
growth, industrial development, or changes in energy efficiency Data provides valuable insight into
energy infrastructure development plans, helping to anticipate future needs and allocate resources
effectively.

Demand Data by Year
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Figure (7) Demand data measured in megawatts over several years

The Figure (8) shows monthly demand data for a particular product or service over 12 months.
According to the graph, average demand ranges between 3,000 and 5,000 units, starting from about
3,000 units in the first month, peaking at 5,000 units in a given month, and then gradually declining.
It can be seen that demand is witnessing clear fluctuations between months, with peaks and lows
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indicating seasonal patterns or external factors affecting demand, Average overall demand looks
relatively stable, with most data ranging around the range of 3,500 to 4,500 units. Months 2 to 10
show marked variation, with a sudden drop in some months such as month 6 or 8, while month 10
sees a clear rise.

Demand Data by Month
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2 < =] 8 10 12
Month

Figure (8) demand data for a particular product or service over 12 months
5. Metrics Analysis

Findings derived from the implementation of the LSTM models are presented along with necessary
background to the results. Good experimental design should mean that results stand on their own, but
enough information is given to allow others to repeat the experiments. The LSTM models clearly
depict the performance metrics used for calculating accuracy and reliability of the forecasting results
root mean squared error (RMSE), R-squared (R?) and Mean Absolute Error (MAE) is defined as the
ratio between the sum of the absolute errors and the number of forecasts Forecasting results are
compared for other machine learning models run under identical conditions; Predictive capability of
the models is depicted clearly with results shown in the form of graphs. All models’ predictions for
presented along with original monthly consumption highlighting differences between models
resulting in deeper insight. Table (5) contrasts two models of forecasting LSTM and RNN, against
three performance metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-
Square (R?). These metrics are often used to quantify the accuracy and effectiveness of forecasting
models.

Table 5 provides a comparison of the performance of two deep learning models, LSTM and RNN,
based on the RMSE, MAE and R-Square evaluation criteria. For the LSTM model, the best results
for RMSE and MAE were recorded when using units of 64 and batch size of 64, with RMSE 187.25
and MAE 139.78, indicating high prediction accuracy. As for the model RNN, which performed best
when using units with a value of 256 and a batch size of 16, with a value of RMSE of 230.34 and a
value of MAE of 232.276. Overall, the LSTM model shows a significant outperformance compared
to the RNN model, scoring lower RMSE and MAE values in most cases, making it the best prediction
choice in this experiment.
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Table 5. metric of LSTM AND RNN model

BACTCH - LSTM RNN
EPOCHS SIZE UNITS RMSE | MAE | R-Square MAE | RMSE | R-Square
100 16 16 194.42 | 14591 | 0.957 293.55 | 389.73 | 0.915
100 16 32 188.08 | 143.56 | 0.960 282.47 | 388.66 | 0.916
100 16 64 196.67 | 147.39 | 0.956 267.92 | 365.88 | 0.925
100 16 128 196.36 | 152.95 | 0.957 232.28 |328.02 | 0.940
100 16 256 188.25 | 142.79 | 0.960 230.34 | 327.42 | 0.941
100 32 16 314.75 | 227.41 | 0.888 343.72 | 448.27 | 0.889
100 32 32 189.85 | 141.57 | 0.959 300.55 | 404.26 | 0.909
100 32 64 197.90 | 147.68 | 0.956 291.93 | 401.83 | 0911
100 32 128 188.47 | 141.75 | 0.960 265.15 | 361.55 |0.928
100 32 256 236.77 | 172.14 | 0.937 236.11 | 334.03 | 0.938
100 64 16 193.10 | 144.12 | 0.958 340.02 | 450.35 | 0.888
100 64 32 189.34 | 143.36 | 0.960 310.56 | 416.59 | 0.904
100 64 64 187.25 | 139.78 | 0.961 294.61 |399.39 | 0.912
100 64 128 199.95 | 142.21 | 0.959 277.83 | 380.37 | 0.920
100 64 256 199.95 | 150.05 | 0.955 283.32 | 379.17 | 0.920
100 128 16 312.54 | 220.67 | 0.890 437.04 | 550.41 | 0.832
100 128 32 271.82 | 203.74 | 0.917 366.67 | 468.09 | 0.879
100 128 64 191.30 | 141.88 | 0.959 392.32 | 501.65 | 0.861
100 128 128 198.13 | 147.76 | 0.956 324.13 | 431.10 | 0.897
100 128 256 244.81 | 175.01 | 0.933 308.74 | 419.63 | 0.902
100 256 16 317.15 | 225.93 | 0.887 549.23 | 662.26 | 0.757
100 256 32 236.77 | 172.14 | 0.937 421.96 | 537.92 |0.840
100 256 64 278.81 | 197.91 | 0.913 462.84 | 56541 |0.823
100 256 128 24247 | 177.19 | 0.934 391.05 | 487.71 | 0.868
100 256 256 193.96 | 143.03 | 0.958 399.68 | 512.31 | 0.855

5.1. Experimental Results

This table (6) provides a comparison of actual and projected values for a period of time from March
3,2021 to August 31, 2024. The data shows a discrepancy between the actual figures and the model's
forecasts, as it can be seen that the expectations were higher than the actual values most of the time,
especially in the last period of August 2024. This table is useful for analyzing the accuracy of a
predictive model and identifying gaps between expectations and reality.
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Table 6. Actual consumption and Predicted consumption in MW

Date Actual Prediction
2021-03-03 6128 6051.8701
2021-03-04 6142 6118.2412
2021-03-05 6093 6195.8936
2024-08-29 5140 5235.3926
2024-08-30 4815 5201.9473
2024-08-31 4976 5149.5293

Figure 9 shows the results of the LSTM model’s prediction of energy demand, showing the
timeline of the actual demand data compared to the model's forecasts during the training predictions
and testing predictions. The graphic shows that the model's forecasts follow well the actual patterns
of energy demand, with some minor differences, especially in peak or low periods. The graphic covers
the period from 2012 to 2024, with energy demand values ranging from 2,000 to 7,000. Model
performance indicates LSTM's ability to learn complex patterns in data and provide accurate
forecasts, enhancing its effectiveness in energy demand forecasting applications
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Figure 9. Energy Demand prediction with LSTM

The figure (10) shows a 90-day energy demand forecast from September 1, 2024 to November 29,
2024, based on historical data from February 1, 2012 to August 29, 2024. Demand is expected to
increase from 4948 MW to 5645.49 MW during this period, due to the seasonal impact that usually
leads to increased consumption during these months. This forecast reflects a recurring pattern of
increase in demand during certain periods of the year, which indicates the importance of taking into
account Seasonal factors in energy planning.
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Figure 10. represents forecast energy demand trend over 90 days
6.conclusion

This study explores two different deep learning methods for electricity energy demand for data
collected by central electricity control office of KRG from years 2012 to 2014. LSTM shows the most
effective performance since it achieves the lowest MAE and RMSE scores with higher R?. The data
exhibited seasonal variations and exogenous factors, rendering temporal behavior analysis essential.
The results indicated that the model can learn intricate patterns in data, particularly following the
implementation of feature engineering techniques, including the extraction of daily, monthly, and
yearly trends. The trials demonstrated that modifying hyperparameters, such as the number of units
and batch size, significantly affected model performance. The results of LSTM model show better
performance than the RNN model based on the metrics provided, as the RMSE (187.25) and MAE
(139.78) values are lower compared to the RNN (RMSE = 230.34, MAE = 232.276), indicating that
LSTM forecasts are more accurate with fewer errors. In addition, the R? coefficient of the LSTM
model (0.961) is higher than that of RNN (0.941).
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