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Abstract: 
 

Accurate forecasting of electricity energy requirements has become critical for current energy 

systems, which are facing increasing challenges due to industrial development, population growth 

and the integration of green energy. The research evaluates the capacity of machine learning and deep 

learning algorithms to forecast demand of electricity energy consumption using dataset information 

from central electricity control office of Iraqi Kurdistan Region Government (KRG). Electricity 

energy consumption data analysis requires predictive models that are more sophisticated than 

traditional methods such as Autoregressive Integrated Moving Average (ARIMA) and exponential 

sequences, as these methods fail to deal with complex nonlinear patterns and high-frequency 

oscillations. Therefore, this study presents deep learning models using Long Short-Term Memory 

(LSTM) and Recurrent Neural Network (RNN), where the test results on the electricity energy data 

from KRG showed the superiority of the LSTM model in terms of accuracy and stability compared 

to RNN, the data was analyzed using multiple performance measures such as Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) to confirm the efficiency of the proposed model. The 

results show LSTM superior performance than the RNN model based on the metrics provided, as the 

RMSE (187.25) and MAE (139.78) values are lower compared to the RNN (RMSE = 230.34, MAE 

= 232.276), indicating that LSTM forecasts are more accurate with fewer errors. In addition, the 

coefficient of determination (R²) of the LSTM model (0.961) is higher than that of RNN (0.941) 

Finally, this model can be applied in intelligent energy systems to improve load management 

efficiency and reduce waste. 
 

Keywords: Electricity Energy Demand Forecasting, LSTM, RNN, Machine Learning, Deep 

Learning, Forecasting. 
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 الملخص: 
 

ر أصبح التنبؤ الدقيق بمتطلبات الطاقة الكهربائية أمرا بالغ الأهمية لأنظمة الطاقة الحالية، التي تواجه تحديات متزايدة نتيجةً للتطو

الصناعي والنمو السكاني ودمج الطاقة الخضراء. يقُيّم البحث قدرة خوارزميات التعلم الآلي والتعلم العميق على التنبؤ بالطلب على 

 الطاقة الكهربائية باستخدام معلومات من قاعدة بيانات دائرة التحكم المركزي للكهرباء في حكومة إقليم كردستان العراق. استهلاك
 

المتحرك المتكامل  يتطلب تحليل بيانات استهلاك الطاقة الكهربائية لنماذج تنبؤية أكثر تطورا من الطرق التقليدية، مثل المتوسط  

( والمتتاليات الأسية، نظرا لعجز هذه الطرق عن التعامل مع الأنماط غير الخطية المعقدة والتذبذبات ARIMAالانحداري الذاتي )

( والشبكة العصبية LSTMعالية التردد. لذلك، تقدم هذه الدراسة نماذج تعلم عميق باستخدام الذاكرة طويلة المدى قصيرة المدى )

الكهربائية من  RNNالمتكررة ) الطاقة  بيانات  الاختبارات على  نتائج  الدقة   LSTMتفوق نموذج    (KRG)(. أظهرت  من حيث 

المتكررة ) العصبية  بالشبكة  أداء متعددة، مثل متوسط  (.  RNNوالاستقرار مقارنةً  البيانات باستخدام مقاييس  الخطأ وقد تم تحليل 

 (، لتأكيد كفاءة النموذج المقترح. RMSEمربع الخطأ )( وجذر متوسط  MAEالمطلق )
 

RMSE  (187.25  )بناءً على المقاييس المُقدمة، حيث إن قيمتي    RNNمقارنةً بنموذج    LSTMتظُهر النتائج أداءً أفضل لنموذج  

، مما يشُير إلى أن تنبؤات   RNN     ،RNN(MAE= 232.276   (RMSE=230.34)( أقل مقارنةً بنموذج  139.78)  MAEو

LSTM  ( أكثر دقةً مع أخطاء أقل. بالإضافة إلى ذلك، فإن معامل التحديدR²  لنموذج )LSTM   (0.961 أعلى من معامل التحديد )

(RNN) (0.941.وأخيرًا، يمُكن تطبيق هذا النموذج في أنظمة الطاقة الذكية لتحسين كفاءة إدارة الأحمال وتقليل الهدر .) 
 

 .، التعلم الآلي، التعلم العميق، التنبؤLSTM ،RNNالتنبؤ بالطلب على الطاقة الكهربائية،  :ةالكلمات المفتاحي
 

 : پوختە
 

پێشبينيکردنی وردی پێداويستييهکانی وزەی کارەبا بووەته شتێکی گرينگ بۆ سيستهمی وزەی ئێستا، که بههۆی گهشهسهندنی 

پيشهسازی و زيادبوونی ژمارەی دانيشتووان و يهکخستنی وزەی سهوز ڕووبهڕووی ئاستهنگهکانی زياتر دەبنهوە. توێژينهوەکه 

فێربوونی قووڵ ههڵدەسهنگێنێت بۆ پێشبينيکردنی خواست لهسهر بهکارهێنانی وزەی    توانای فێربوونی ئامێر و ئهلگۆريتمهکانی 

ناوەندی کۆنترۆڵکردنی کارەبای حکومهتی ههرێمی کوردستانی  فهرمانگهی  له  داتا سێت  زانيارييهکانی  بهکارهێنانی  به  کارەبا 

 .عێراق
 

شيکاری داتاکانی بهکارهێنانی وزەی کارەبا پێويستی به مۆدێلی پێشبينيکراو ههيه که ئاڵۆزتر بێت له شێوازە تهقليدييهکانی وەکو  

( خۆپاشکهوتن  يهکگرتووی  جووڵهی  له ARIMAتێکڕای  دەهێنن  شکست  ڕێگايانه  ئهم  چونکه  ڕيزبهندييهکان،  زنجيرە  و   )

قووڵ  فێربوونی  مۆدێلی  توێژينهوەيه  ئهم  بۆيه  بهرز.  فرێکوێنسی  لهرزينهکانی  و  ئاڵۆزەکان  ناهێڵييه  نهخشه  لهگهڵ  مامهڵهکردن 

(، که ئهنجامی RNN( و تۆڕی دەماری دووبارەبووەوە )LSTMدەخاته ڕوو به بهکارهێنانی بيرگهی کورتخايهنی درێژخايهن )

ی له ڕووی وردبينی و سهقامگيرييهوە  LSTMی  ەوە باڵادەستی مۆدێل)   (KRG تاقيکردنهوەکان لهسهر داتاکانی وزەی کارەبا له

( MAEداتاکان به بهکارهێنانی چهندين پێوەرەکانی ئهدای کارکردن وەک ههڵهی مامناوەندی ڕەها ) نيشان دا،    RNNبهراورد به  

 ( بۆ پشتڕاستکردنهوەی کارايی مۆدێلی پێشنيارکراوی.RMSEو ههڵهی چوارگۆشهی مامناوەندی ڕەگ شيکرانهوە )
 

نيشان دەدەن به پشتبهستن به پێوەرەکانی پێشکهشکراو، چونکه بههاکانی    RNNله مۆدێلی    LSTMئهنجامهکان ئهدای باشتری  

RMSE  =(187.25  و  )MAE( به)  139.78=  بهراورد  به  کهمترن   )RNN  )230.34=RMSE   ،MAE = 232.276 ،

پێشبينييهکانی   ئهوەی  بۆ  ئاماژەيه  )  LSTMئهمهش  دياريکردن  ڕێژەی  ئهوە،  سهرەڕای  کهمتر.  ههڵهی  لهگهڵ  (ی  2Rوردترن 

له ڕێژەی  LSTM  (0.961مۆدێلی   له سيستهمی وزەی زيرەکدا RNN  (0.941( زياترە  ئهم مۆدێله  دەتوانرێت  له کۆتاييدا،   )

 بهکاربهێنرێت بۆ باشترکردنی کارايی بهڕێوەبردنی بار و کهمکردنهوەی بهفيڕۆدان. 
 

 .ینيشب ێپ ،ڵ قوو یربوونێف ر،ێئام  یربوونێ، فLSTM ،RNN با،ەکار ەیوز یداواکار یني شبێپ کليلە وشە:
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1. Introduction  
 

Energy consumption forecasting has become increasingly important for better managing energy 

usage and optimizing demand response strategies. In large scale, the efficient management of urban 

areas and energy consumption in buildings is the major challenge for the future. [1].  
 

Accurate scalable and timely forecasting methods are essential for the world to handle escalating 

energy demand from industrialization and population growth as well as renewable energy 

deployment. Reputable energy demand predictions allow improved grid operations and minimize 

operational costs that support sustainability through alternative energy systems [2]. 
 

Throughout numerous years the energy sector depended on three traditional predictive models 

including ARIMA together with exponential smoothing and seasonal decomposition models. 

Ordinary statistical prediction models perform well within limited circumstances yet they cannot 

provide reliable outcomes when processing nonlinear data with high-frequency changes and 

complicated seasonal patterns which characterize modern energy consumption [3].  
 

Machine learning in time series is a branch of artificial intelligence that focuses on analyzing time-

related data to predict future trends or detect patterns. This technology is used in areas of predicting 

energy consumption [4].  
 

Deep learning models particularly Recurrent Neural Networks (RNN) and Long Short-Term 

Memory (LSTM) demonstrate superior performance in forecasting applications because they learn 

sophisticated temporal patterns while handling changing patterns in data. The models demonstrate 

better performance than traditional methods particularly when they receive sufficient training data 

with numerous features [5].  
 

The effectiveness of deep learning models depends heavily on input data requirements while their 

success also depends on suitable feature selection because this process advances both performance 

and generalization capabilities [6 ].  
 

2. Literature Review 
 

Khan et al. developed a new power cost forecast which implemented multi-head self-attention 

mechanisms together with Convolutional Neural Networks (CNNs). The researchers applied their 

proposed model to Ontario energy market datasets from 2020 while obtaining outstanding results 

through best average Mean Absolute Percentage Error (MAPE) of 1.75% and Root Mean Square 

Error (RMSE) of 0.0085. This research proved the capability of integrating state-of-the-art machine 

learning algorithms for power price forecasting to deliver accurate results suitable for real-world 

energy market applications [7]. 
 

The error-compensation model developed by Ghimire et al. integrates Long Short-Term Memory 

(LSTM) networks, Convolutional Neural Networks (CNN) along with Variational Mode 

Decomposition (VMD) algorithms for predicting half-hourly electricity prices. These advanced 

algorithms received a fresh configuration to enhance forecasting capabilities. The researchers 

validated their solution through the accuracy results which indicated substantial forecast 

advancements according to the Legates and McCabe Index versus benchmark models [8]. 

http://dx.doi.org/10.25098/9.1.29
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Biligili et al. implemented four predictive models which included ANFIS-GP, ANFIS-SC, ANFIS-

FCM as well as LSTM for Turkey's energy consumption forecasting while assessing their predictive 

abilities. LSTM demonstrated the most successful performance according to the study results and 

yielded a 1.91% MAPE measurement. Results proved that LSTM surpasses ANFIS-based models 

because ANFIS-based models delivered MAPE values of 4.47%, 3.21% and 2.34%. The research 

showed that LSTM succeeded in anticipated energy consumption trends while proving suitable for 

Turkish energy market applications [9]. 
 

Kuo et al. presented a short-term EP prediction system by incorporating CNN technology into 

LSTM architecture and applying it to real EP dataset. The model produced superior performance than 

SVM, RF, MLP, CNN and LSTM when measured by MAE at 8.84. The predictability of the model 

proved higher through its MAE value of 8.84 which exceeded LSTM (9.82), CNN (9.80), MLP 

(9.86), RF (9.20), and SVM (28.98) respectively [10]. 
 

The CNN-LSTM model built by Heidarpanah et al. served for EP forecasting in Iran's electricity 

market. The CNN-LSTM model received performance evaluation through its comparison with 

Multivariate Linear Regression (MLR), SVM, ANN, ANFIS, and ANN-Genetic Algorithm. Their 

research showed CNN-LSTM provided the most suitable solution because it demonstrated superior 

robustness compared to the MLR and SVM models unable to handle EP time-series oscillations [11]. 
 

Farsi et al. proposed an electricity load consumption and power consumption prediction system 

based on Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) networks 

and PLCNet. Malaysian hourly load consumption data and daily power consumption data from 

Germany formed the basis of the research. The authors determined the hybrid PLCNet model 

provided superior performance than other models by showing substantial accuracy gains through an 

enhancement from 83.17% to 91.18% for German data and reaching 98.23% for Malaysian data. 

Research evidence demonstrates that hybrid models have potential to boost accuracy measurements 

across different energy markets [12]. 
 

Khafaf et al. Proposed Long Short-Term Memory (LSTM) model to forecast electricity 

consumption for three- and fifteen-days energy demand for different energy load across each month 

in the year. The research utilized machine learning approaches for time series prediction, employing 

the LSTM model and introducing an innovative approach to transform time into a feature for the 

training phase to enhance performance. LSTM demonstrate a strong architecture for both short and 

median forecasting. Results shows that how to better manage peak energy demand with MAPE at 

3.15% [13]. 
 

Azzone et al. They propose a new modelling approach that incorporates trend, seasonality and 

weather conditions, as explicative variables in a shallow Neural Network with an autoregressive 

feature, by emphasizing probabilistic forecasts and utilizing illustrative variables such as direction, 

seasonality, and weather conditions. They introduce A novel model utilizing a shallow neural network 

with a self-regressive characteristic, integrating trend, seasonality, and meteorological parameters as 

determinants of prediction. Outstanding outcomes in the rigorous forecasting of energy consumption 

were achieved with a one-year test cohort (daily data from New England, US), demonstrating the 

model's superiority over conventional models. [14] 
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Mahjoub et al. They compare three machine learning algorithms (LSTM, GRU, Drop-GRU) for the 

prediction of short-term energy consumption utilizing time series data, with the objective of 

enhancing energy management and minimizing waste. Energy consumption data from select French 

cities were utilized in a time series model, employing three machine learning algorithms (LSTM, 

GRU, Drop-GRU) to generate forecasts and evaluate their efficacy. LSTM forecasts can be utilized 

for proactive decision-making in electrical load control, particularly when consumption surpasses 

allowable thresholds, hence enhancing power quality and equipment maintenance. Their results 

indicated that the Drop-GRU was superior to the GRU and the LSTM. [15] 
 

Ghojogh et al. This paper elucidates recurrent neural networks (RNN) and LSTM networks, 

addressing issues of vanishing and exploding gradients in long-term dependencies, along with 

recommended remedies such as semi-fixed weight arrays and portal cells in LSTM. The paper 

commences with the dynamic system and temporal reverse propagation of RNNs, then addressing 

solutions like leak units and echo networks, and concluding with an in-depth elucidation of LSTM 

gates and cells. This study serves as an extensive instructional resource on RNN and LSTM, 

emphasizing the challenges and solutions in modelling long-term dependencies. [16] 
 

3. Background Theory 
 

The Figure (1) methodology uses raw data from a CSV file which contains Date Time and Demand 

columns during its initial data preprocessing phase. A specific format is applied to read the Date Time 

column to maintain correct date presentation while processing data with day-first date organization. 

Data processing on the Date Time column allows chronological sorting that maintains proper time 

series arrangement for analysis.  
 

The data receives Min-Max scaling normalization before the model building process where 

sequences are created for LSTM and RNN. The data separates into training which contains 80% of 

data while the remaining 20% goes to test mode. The design of the LSTM model incorporates 16 

to256 units in its LSTM layer and a dense output layer that applies an Adam optimizer with an MSE 

loss function. The training process continued for 50-100 epochs while checking for overfitting risks. 
 

 
Figure 1. Model Methodology 

http://dx.doi.org/10.25098/9.1.29
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3.1 Dataset Description 
 

The data set consists of 4596 rows with two columns: Date Time and Demand. The Date Time 

column is the observation date of energy demand, and the Demand column is the energy demand for 

the respective date. 
 

1. Date Time: Initially of object type, this column contains the timestamp of the energy demand data. 

2. Demand: This column has integer values for the energy demand in megawatt (MW) units. 
 

The descriptive statistics reveal a description of the Demand column, providing useful information 

such as the mean, standard deviation, minimum, maximum, and percentiles. 
 

1. Count: The Demand column contains 4596 non-null values, confirming that there are no missing 

values in the data set. 

2. Mean: The average energy demand is 4131.96 MW. 

3. Standard Deviation: The figures for demand have a deviation of 1318.39 MW units from the mean. 

4. Min and Max: The lowest demand is 1647, and the highest recorded demand is 7658 MW. 

5. Percentiles: 25th, 50th (median), and 75th percentiles indicate that the distribution of demand is 

rather scattered, ranging between 3166.5 MW and 4952.25 MW. 
 

3.2. Feature Engineering and modeling  
 

Feature engineering is one of the most important steps in the methodology. In general, it is the 

process and transforming the features for a modeling problem. A feature is a measurable aspect of a 

phenomenon which is relevant to the prediction. Features should be carefully aggregated to improve 

the performance of the model. In time-series problems, it is important to extract and select the right 

features that capture the relevant variables and patterns of the observed phenomenon. For LSTM 

model analysis, we are conducting feature engineering by extracting day, monthly, and yearly trends 

from the "Datetime " column. This includes creating features such as day of the month, month and 

year, along with the original demand values. These engineered features will help the LSTM model 

capture temporal patterns and improve forecasting accuracy. As show in table 1. This domain 

knowledge guides the construction of new features to test, often in an experimental way the data is 

4596 daily, 660 weeks and 151 months.  
 

Table 1 Date Time indexing and extracting features 

  Date Time Demand Year month day 

0 01/02/2012 3111 2012 2 1 

1 02/02/2012 3022 2012 2 2 

2 03/02/2012 2841 2012 2 3 

... ...   ... ... ... 

4593 29/08/2024 5140 2024 8 29 

4594 30/08/2024 4815 2024 8 30 

4595 31/08/2024 4976 2024 8 31 
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3.3. LSTM Model Configuration 
 

An essential component of long-term networks, the LSTM (Long Short-Term Memory) cell's 

structural structure is seen in Figure (2). The cell is made up of a number of primary gateways, such 

as the input gate, which chooses which fresh data should be stored, the output gate, which chooses 

which information should be discarded, and the forget gate. This manages the data that is forwarded 

to the following stage. To control the information flow, these gates use activation functions like Tanh 

and Sigmoid. Point-wise multiplication and point-wise addition are used to describe in-cell 

computations, which help the cell avoid the vanishing gradient issue that traditional neural networks 

face and preserve significant information over time. Because of their intricate design, LSTM cells 

process information efficiently. Sequential data such as energy demand forecasting or time series 

analysis. 
 

In addition to the hidden state h(t) and the state of cell c(t−1), the image includes the LSTM cell's 

primary gates, which are the (ft) forgetfulness gateway, the (it) input gate, and the (Ot) output 

gateway. An overview of the information flow within the cell is provided by the input, which is also 

known as x(t). Machine translation and speech recognition are two applications that benefit from this 

methodology. 
 

LSTM Cell Architecture 
 

The following figure illustrates the internal operations of a single LSTM unit, highlighting the 

Forget, Update, and Output gates, along with their associated computations. 

 
Figure (2) General structure of LSTM model [19] 
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3.3.1 Forget Gate 
 

Each LSTM cell consists of several gates. The most widely known are the forget gate, the input 

gate, and the output gate. The forget gate first takes the element-wise multiplication of the previous 

cell state and the output of the forget gate. Next, a value between 0 and 1 is forced by applying the 

sigmoid activation function, deciding which information from the previous cell state will be 

discarded. Thus, the forget gate is an important gate regarding memory information. In an LSTM-

based system, some use cases make a better performance by forgetting quickly the previous 

information at some points, while some cases require a better memory of even small differences in 

two adjacent inputs The forget gate plays a role in convincingly learning long-range dependencies, 

and striking a proper balance between overfitting and redundancy problems, determines whether data 

should be removed from the cell state. The equation for the forget gate is: 
 

] )1,( [ft Wf ht xt bf=  − +  ……………………………………………………. (1) 

  

where: 
 

• 𝑊𝑓 : symbolizes the forget gate's weight matrix. 

• [𝐡𝐭−𝟏, 𝐱𝐭]: indicates that the current input and the prior concealed state have been 

concatenated. 

• 𝒃𝒇 : Is the Forget Gate biased. 

• σ: is the activation function of the sigmoid. 
 

3.3.2 Input Gate 
 

Among the four gates in a long short-term memory cell, the input gate is the one that navigates 

when new information should be introduced. While the forget gate controls the component-wise scale 

of the cell state, the input gate enables learning immediately from the latest available inputs with 

element-wise control over the introduction of new values to the cell state. The input gate prominently 

uses an element-wise multiplication operation. While the individual components of the incoming and 

cell state vectors can be high, their element-wise multiplication keeps the balance of the overall scale 

between the new values and the existing state. Important information is added to the cell state by the 

input gate. The data is first controlled by the sigmoid function, and then it is remembered using inputs 

h_(t-1) and x_t in a fashion similar to the forget gate. After that, a vector with an output range of -1 

to +1 is created using the tanh function, which contains every conceivable value from ht-1 and x_t. 

Lastly, the vector values are multiplied by the prescribed values to acquire the pertinent information. 

The equation for the input gate is:  
 

] )1,( [it Wi ht xt bi=  − + …………………………………….…………………. (2) 
 

• Wi is the weight matrix for the input gate. xt: Current input 

• ht−1: Previous hidden state. ct−1: Previous cell state 

• bi is the bias term for the input gate. 
 

The candidate cell state (gt) is computed  
 

gt=tanh (Wg⋅[ht−1,xt]+bg) ……………….……………………………………… (3) 
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3.3.3 Output Gate 
 

Information is stored in the cell state that is potentially useful and can be slightly modified or 

preserved by the gates. 
 

The output gate of an LSTM is the mechanism by which a recurrent neural network cell decides 

what to output at a time step. The output at each hidden unit is a nonlinear, saturating function of the 

product of the activation value of that unit and its output weights. Output gates also play a role in 

moving information back to input layers in sequence generation tasks. A similar mechanism is at play 

in the output gate of an LSTM. The job of the output gate is to govern the flow of information in a 

recurrent neural network from the layer with LSTM cells to the next layer or the output. 
 

the output gate is a central factor in deciding the behavior of the LSTM cell, similar to the effect 

of input gates on the hidden gate in a multiplicative LSTM. The output gate plays a crucial role in the 

articulation of the model actions and demonstrates the delicate balance that emerges in how a long-

term sequence memory is organized into relevant, actionable outputs. Ample experimental validation 

of this hypothesis is provided throughout a set of common LSTM model evaluations. Finally, a 

simple, bi-directional attention mechanism with clearer interpretative value is presented to compute 

the Output Gate Activation. 
 

The equation for the input output is: 
 

ot=σ(Wo⋅[ht−1,xt]+bo)………………………………………………………… (4) 

The hidden state (ht) is then computed as 

ht=ot⊙tanh(ct) …………………………………………………………………. (5) 

where: 
 

• Wo is the weight matrix for the output gate. ct: New cell state 

• bo is the bias term for the output gate. ht: New hidden state (also the output of the LSTM cell) 

• σ → Sigmoid activation function  
 

3.3.4 Cell State Update 
 

The equation for the cell state update is: 
 

1 ~ct ft ct it c t= − +

……………………………………………………………………….………………. (6) 

• σ is the sigmoid activation function, tanh is the hyperbolic tangent activation function. 

• ⊙ denotes element-wise multiplication,  

• [ht−1, xt] is the concatenation of the previous hidden state and the current input  
 

Table (2) provides a short description of the layers used in the LSTM model. Each layer is designed 

to take and process the sequential data with some specific settings of units, activation function, and 

output shape. The LSTM layer is the most important part of the model that acquires temporal 

dependencies in the input sequences, and the Dense layer provides the final output prediction. 

Knowing the structures and parameters of these layers facilitates the interpretation of the model's 

performance and workings. 
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Table 2. LSTM Model Configuration 

Layer 
Units 

Shape 
Activation Function Output Shape 

LSTM Layer 
16,32,64,128,256 

units 
ReLU 

(batch_size, 

16,32,64,128,256) 

Dense Layer 1 unit  (batch_size, 1) 

 

3.4. RNN Model Structure 
 

This Figure (3) show with an emphasis on hidden weights and units, the image displays a diagram 

illustrating the architecture of a recurrent neural network (RNN). Weights, X inputs, Y outputs, and 

hidden units h are examples of major components. The connections between hidden units at various 

time steps, such as ht−1, ht, and ht+1, depict the iterative process and demonstrate how the inputs 

Xt−1, Xt, and Xt+1 impact them. Additionally, elements like "unfold" are mentioned, which show 

how the network is being deployed over time. 

Redesigned RNN Architecture 

 
Figure (3) General structure of RNN model [20] 
 

RNN Unfolded in Time: 
 

RNNs process sequences one element at a time, maintaining a hidden state that is updated at each 

time step. When you "unfold" an RNN, you visualize each time step explicitly. 
 

• RNN Components: x: Input vector, h: Hidden state vector, o: Output vector, (U, W, V): Weight 

matrices 
 

 3.4.1 Hidden state update: 
 

( ) ( ( ) ( ))1h t tanh Wh t Ux t= − + ………………………………………………………………………. 

(7) 
 

• h(t): hidden state at time t, h(t−1): previous hidden state, x(t): input at time t 

• W: hidden-to-hidden weight matrix, U: input-to-hidden weight matrix 

• tanh: activation function (commonly used) 
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3.4.2 Output computation 
 

o(t)=SoftMax (Vh(t)) ……………………………………………………………… (8) 
 

• o(t): output at time t , V: hidden-to-output weight matrix 

• SoftMax: used to get a probability distribution over the output 
 

The Simple RNN model architecture is shown in Table (3) which depicts the Simple RNN model 

architecture, its layers, respective units or shapes, activation functions, and output shapes. The Simple 

RNN layer is used to handle temporal dependencies in the input sequence, and the Dense layer gives 

the final output prediction. All these layers handle different things in sequential data processing, from 

pattern capture to output prediction. 
 

Table 3. RNN Model Structure 

Layer 
Units 

Shape 

Activation 

Function 
Output Shape 

Simple RNN 

Layer 
16,32,64,128,256units Relu (batch_size, 16,32,64,128,256) 

Dense Layer 1 unit - (batch_size, 1) 

 

3.5. Training Parameters 
 

The key training parameters used in the model appear in Table (4) to control different training 

features including number of epochs, batch size, optimization method and loss function. The training 

procedure occurs more than 100 times as the entire dataset passes through the model. The model 

weight updating process occurs after processing each batch size value set by default. The Adam 

optimizer functions as the weight adjustment method during training because it demonstrates 

remarkable efficiency in gradient-based optimization. Mean Abustle Error (MAE) and Root Mean 

Squared Error (RMSE) functions as the loss metric since it is a traditional regression selection for 

minimizing the squares of actual and predicted value discrepancies. The model benefits from data 

shuffling that enables random mixing of training data at epoch beginnings to enhance its ability to 

predict unknown data. 
 

Table 4. Deep Learning Training Parameters 

Parameter Value 

Epochs 100 epochs 

batch_size 16,32,64,128,256 

Optimizer Adam optimizer 

loss_function MAE,RMSE  

Shuffle True 
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4. Results and Discussions 
 

The following sections provide a cautious analysis of the forecasting models and training results, 

including LSTM and RNN, each model's performance is contrasted using training curves, observing 

their ability to learn and generalize from previous data. A rigorous comparison of the models by 

critical performance metrics such as MAE, RMSE, and R² is also provided. This is followed by a 

comparison of our study with similar research in the field, illustrating several forecasting methods 

and their ability to predict electricity demand. The comparison draws the superiority of the models 

that have been employed in this research and offers knowledge on how these can be utilized for real 

energy markets. 
 

4.1. LSTM Training Results 
 

The figure (4) presents the training curve for the LSTM model which depicts both the training loss 

and validation loss over 100, we use stops training function to stop validation loss when doesn't 

improve for 5 consecutive epochs. The training loss drops quickly at the beginning because the model 

absorbs the data patterns effectively. The model demonstrates a major drop in performance which 

shows it effectively identifies the key relationships within the data. The training loss (blue line) 

alongside validation loss (orange line) reaches tiny values before maintaining this steady point at 

zero. The model has successfully minimized training errors to such an extent that it stops overfitting. 

The model shows effective generalization ability across unseen data because the training loss matches 

closely with the validation loss. The model achieved satisfactory results by successfully learning 

time-series patterns in the data because its loss values stayed at consistent low levels.  

 
Figure 4. LSTM Training Results 
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4.2. RNN Training Results 
 

The training curve of RNN in Figure (5) shows both training loss and validation loss over 100 

epochs. Similar to the training curve of LSTM, training loss has a steep drop-off in the first few 

epochs before it plateaus at a point close to a low value. This is an indication that the model picks up 

the significant patterns in the data quickly during early training. 
 

But unlike the LSTM model, there is a small oscillation in the validation loss, especially after the 

initial steep drop. Such small oscillations in the validation loss during the course of training may 

indicate some instability in the model's performance or responsiveness to small changes in the 

validation set. Despite these small oscillations, both training and validation loss values are low and 

continue to converge with progressing training. 

 
Figure 5. RNN Training Results 
 

Figure (6) shows the fluctuation in the demand for the date from February 2. 2012 to 31/08/2024. 

We can see that the data is a bit cyclic and projects no trend or seasonal pattern. The plot shows that 

the peak energy consumption was around December (2019), and the minimum energy consumption 

was around Apr 2012. 
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Figure 6. energy consumption according to daily  
 

The Figure (7) shows electricity demand data measured in megawatts over several years, starting 

from 2012 to 2024. It can be seen that demand has experienced marked fluctuations during this period, 

rising and falling between different years. In some years such as 2014 and 2018, demand seems to 

have peaked, while in others such as 2016 and 2020, it may have declined significantly Average 

demand during this period shows relative stability, with a general trend of increasing as the years 

progress, especially as 2024 approaches. These changes may reflect factors such as population 

growth, industrial development, or changes in energy efficiency Data provides valuable insight into 

energy infrastructure development plans, helping to anticipate future needs and allocate resources 

effectively. 

 
Figure (7) Demand data measured in megawatts over several years 
 

The Figure (8) shows monthly demand data for a particular product or service over 12 months. 

According to the graph, average demand ranges between 3,000 and 5,000 units, starting from about 

3,000 units in the first month, peaking at 5,000 units in a given month, and then gradually declining. 

It can be seen that demand is witnessing clear fluctuations between months, with peaks and lows 
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indicating seasonal patterns or external factors affecting demand, Average overall demand looks 

relatively stable, with most data ranging around the range of 3,500 to 4,500 units. Months 2 to 10 

show marked variation, with a sudden drop in some months such as month 6 or 8, while month 10 

sees a clear rise.  

 
Figure (8) demand data for a particular product or service over 12 months 
 

5. Metrics Analysis 
 

Findings derived from the implementation of the LSTM models are presented along with necessary 

background to the results. Good experimental design should mean that results stand on their own, but 

enough information is given to allow others to repeat the experiments. The LSTM models clearly 

depict the performance metrics used for calculating accuracy and reliability of the forecasting results 

root mean squared error (RMSE),  and Mean Absolute Error (MAE) is defined as the 

ratio between the sum of the absolute errors and the number of forecasts Forecasting results are 

compared for other machine learning models run under identical conditions; Predictive capability of 

the models is depicted clearly with results shown in the form of graphs. All models’ predictions for 

presented along with original monthly consumption highlighting differences between models 

resulting in deeper insight. Table (5) contrasts two models of forecasting LSTM and RNN, against 

three performance metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-

Square (R²). These metrics are often used to quantify the accuracy and effectiveness of forecasting 

models. 
 

Table 5 provides a comparison of the performance of two deep learning models, LSTM and RNN, 

based on the RMSE, MAE and R-Square evaluation criteria. For the LSTM model, the best results 

for RMSE and MAE were recorded when using units of 64 and batch size of 64, with RMSE 187.25 

and MAE 139.78, indicating high prediction accuracy. As for the model RNN, which performed best 

when using units with a value of 256 and a batch size of 16, with a value of RMSE of 230.34 and a 

value of MAE of 232.276. Overall, the LSTM model shows a significant outperformance compared 

to the RNN model, scoring lower RMSE and MAE values in most cases, making it the best prediction 

choice in this experiment. 
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Table 5. metric of LSTM AND RNN model  

EPOCHS  
BACTCH -

SIZE 
UNITS  

LSTM  RNN  

RMSE MAE R-Square  MAE RMSE R-Square  

100 16 16 194.42 145.91 0.957 293.55 389.73 0.915 

100 16 32 188.08 143.56 0.960 282.47 388.66 0.916 

100 16 64 196.67 147.39 0.956 267.92 365.88 0.925 

100 16 128 196.36 152.95 0.957 232.28 328.02 0.940 

100 16 256 188.25 142.79 0.960 230.34 327.42 0.941 

100 32 16 314.75 227.41 0.888 343.72 448.27 0.889 

100 32 32 189.85 141.57 0.959 300.55 404.26 0.909 

100 32 64 197.90 147.68 0.956 291.93 401.83 0.911 

100 32 128 188.47 141.75 0.960 265.15 361.55 0.928 

100 32 256 236.77 172.14 0.937 236.11 334.03 0.938 

100 64 16 193.10 144.12 0.958 340.02 450.35 0.888 

100 64 32 189.34 143.36 0.960 310.56 416.59 0.904 

100 64 64 187.25 139.78 0.961 294.61 399.39 0.912 

100 64 128 199.95 142.21 0.959 277.83 380.37 0.920 

100 64 256 199.95 150.05 0.955 283.32 379.17 0.920 

100 128 16 312.54 220.67 0.890 437.04 550.41 0.832 

100 128 32 271.82 203.74 0.917 366.67 468.09 0.879 

100 128 64 191.30 141.88 0.959 392.32 501.65 0.861 

100 128 128 198.13 147.76 0.956 324.13 431.10 0.897 

100 128 256 244.81 175.01 0.933 308.74 419.63 0.902 

100 256 16 317.15 225.93 0.887 549.23 662.26 0.757 

100 256 32 236.77 172.14 0.937 421.96 537.92 0.840 

100 256 64 278.81 197.91 0.913 462.84 565.41 0.823 

100 256 128 242.47 177.19 0.934 391.05 487.71 0.868 

100 256 256 193.96 143.03 0.958 399.68 512.31 0.855 
 

5.1. Experimental Results 
 

This table (6) provides a comparison of actual and projected values for a period of time from March 

3, 2021 to August 31, 2024. The data shows a discrepancy between the actual figures and the model's 

forecasts, as it can be seen that the expectations were higher than the actual values most of the time, 

especially in the last period of August 2024. This table is useful for analyzing the accuracy of a 

predictive model and identifying gaps between expectations and reality. 
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Table 6. Actual consumption and Predicted consumption in MW   

Date  Actual Prediction 

2021-03-03 6128 6051.8701 

2021-03-04 6142 6118.2412 

2021-03-05 6093 6195.8936 

… …. … 

2024-08-29 5140 5235.3926 

2024-08-30 4815 5201.9473 

2024-08-31 4976 5149.5293 
 

Figure 9 shows the results of the LSTM model’s prediction of energy demand, showing the 

timeline of the actual demand data compared to the model's forecasts during the training predictions 

and testing predictions. The graphic shows that the model's forecasts follow well the actual patterns 

of energy demand, with some minor differences, especially in peak or low periods. The graphic covers 

the period from 2012 to 2024, with energy demand values ranging from 2,000 to 7,000. Model 

performance indicates LSTM's ability to learn complex patterns in data and provide accurate 

forecasts, enhancing its effectiveness in energy demand forecasting applications 

 
Figure 9. Energy Demand prediction with LSTM  
 

The figure (10) shows a 90-day energy demand forecast from September 1, 2024 to November 29, 

2024, based on historical data from February 1, 2012 to August 29, 2024. Demand is expected to 

increase from 4948 MW to 5645.49 MW during this period, due to the seasonal impact that usually 

leads to increased consumption during these months. This forecast reflects a recurring pattern of 

increase in demand during certain periods of the year, which indicates the importance of taking into 

account Seasonal factors in energy planning. 
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Figure 10. represents forecast energy demand trend over 90 days  
 

6.conclusion 
 

This study explores two different deep learning methods for electricity energy demand for data 

collected by central electricity control office of KRG from years 2012 to 2014. LSTM shows the most 

effective performance since it achieves the lowest MAE and RMSE scores with higher R2. The data 

exhibited seasonal variations and exogenous factors, rendering temporal behavior analysis essential. 

The results indicated that the model can learn intricate patterns in data, particularly following the 

implementation of feature engineering techniques, including the extraction of daily, monthly, and 

yearly trends. The trials demonstrated that modifying hyperparameters, such as the number of units 

and batch size, significantly affected model performance. The results of LSTM model show better 

performance than the RNN model based on the metrics provided, as the RMSE (187.25) and MAE 

(139.78) values are lower compared to the RNN (RMSE = 230.34, MAE = 232.276), indicating that 

LSTM forecasts are more accurate with fewer errors. In addition, the R² coefficient of the LSTM 

model (0.961) is higher than that of RNN (0.941). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.25098/9.1.29


The Scientific Journal of Cihan University – Sulaimaniya         PP: 62-81     
Volume (9), Issue (1), June 2025 

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print) 
 

http://dx.doi.org/10.25098/9.1.29DOI:   
 

 

 

80 
      Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0) 

 

Reference 
 

[1] Zhou, Y., Li, X., Wang, J., & Chen, H. Advances in energy consumption forecasting for smart 

buildings and cities: Methods and applications. Renewable and Sustainable Energy Reviews, 

169, 113012, 2023 

[2]   A. O. Aderibigbe, E. C. Ani, P. E. Ohenhen, N. C. Ohalete, and D. O. Daraojimba. "Enhancing 

energy efficiency with ai: a review of machine learning models in electricity demand 

forecasting." Eng. Sci. Technol. J. vol. 4, no. 6, pp. 341-356, 2023.  

[3]  S. F. Ahmed, M. S. B. Alam, M. Hassan, M. R. Rozbu, T. Ishtiak, N. Rafa, M. Mofijur, A. B. M. 

Shawkat Ali, and A. H. Gandomi. “Deep learning modelling techniques: current progress, 

applications, advantages, and challenges”. Artif Intell Rev vol 56, no 11, pp. 13521–13617, 

2023. 

[4] Zhang, W., Liu, H., Zhang, J., & Wang, Y. A hybrid deep learning model for short-term load 

forecasting using improved VMD and CNN–BiLSTM with attention mechanism. Expert 

Systems with Applications, 239, 121837. (2025). 

[5]  W. Zhao, Y. Gao, T. Ji, X. Wan, F. Ye and G. Bai, "Deep Temporal Convolutional Networks for 

Short-Term Traffic Flow Forecasting," IEEE Access, vol. 7, pp. 114496-114507, 2019.  

 [6] Utku, A., & Kaya, S. K. Deep learning based on a comprehensive analysis for waste 

prediction. Operational Research in Engineering Sciences: Theory and Applications, 5(2), 176-

189,2022. 

[7]  Z. A. Khan, et al. “Short-Term Electricity Price Forecasting Through Convolutional Neural 

Network (CNN). In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, 

Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent 

Systems and Computing, vol 1150. Springer, Cham,2020. 

[8]   S. Ghimire, R. C. Deo, D. Casillas-Pérez, and S. Salcedo-Sanz. “Two-step deep learning 

framework with error compensation technique for short-term, half-hourly electricity price 

forecasting”. Appl. Energy, vol. 353, p.122059, 2024.  

[9]   M. Bilgili, N. Arslan, A. ŞEKERTEKİN, and A. YAŞAR. “Application of long short-term 

memory (LSTM) neural network based on deep learning for electricity energy consumption 

forecasting”. Turkish J. of Elect. Eng. Com. Sci., vol. 30, no.1, pp.140-157, 2022.  

[10] P-H. Kuo, C-J. Huang. “An Electricity Price Forecasting Model by Hybrid Structured Deep 

Neural Networks”. Sustainability, vol. 10, no. 4, p. 1280, 2018.  

[11]   M. Heidarpanah, F. Hooshyaripor, and M. Fazeli. “Daily electricity price forecasting using 

artificial intelligence models in the Iranian electricity market. Energy, vol, 263, p.126011. 2023.  

[12] B. Farsi, M. Amayri, N. Bouguila and U. Eicker, "On Short-Term Load Forecasting Using 

Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach". IEEE 

Access, vol. 9, pp. 31191-31212, 2021,  

[13]  N. Al Khafaf, M. Jalili, and P. Sokolowski, "Application of Deep Learning Long Short-Term 

Memory in Energy Demand Forecasting. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, 

C. (eds) Engineering Applications of Neural Networks. EANN 2019. Communications in 

Computer and Information Science, vol, 1000. Springer, Cham. https://doi.org/10.1007/978-3-

030-20257-6_3 ,2019.  

http://dx.doi.org/10.25098/9.1.29


            The Scientific Journal of Cihan University – Sulaimaniya        PP: 62-81 
Volume (9), Issue (1), June 2025 

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print) 
 

 

DOI: http://dx.doi.org/10.25098/9.1.29 
 

 
81 

This is 

an open 

access 

   Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0) 

[14] M. Azzone and R. Baviera, "Neural Network Middle-Term Probabilistic Forecasting of Daily 

Power Consumption," J. Energy Mark., vol. 14, no. 1, 2020.  

[15] Mahjoub, S., Chrifi-Alaoui, L., Marhic, B., & Delahoche, L. Predicting energy consumption 

using   

    LSTM, multi-layer GRU and Drop-GRU neural networks. Sensors, 22(11), 4062, 2022. 

 

[16] B. Ghojogh and A. Ghodsi, "Recurrent Neural Networks and Long Short-Term Memory 

Networks: Tutorial and Survey," Available at: http://arxiv.org/abs/2304.11461, 2023. 

[17] Fatovatikhah, F., Ahmedy, I., & Noor, R. M. (2024). Waste Prediction Approach Using Hybrid 

Long Short-Term Memory with Support Vector Machine. International Journal of 

Computational Intelligence Systems, 17(1), 103. 

[18] Yazdani, M., Kabirifar, K., & Haghani, M. (2024). Optimizing post-disaster waste collection by 

a deep learning-enhanced differential evolution approach. Engineering Applications of 

Artificial Intelligence, 132, 107932. 

[19] Siami-Namini, Sima, Neda Tavakoli and Akbar Siami Namin. "The performance of LSTM and 

BiLSTM in forecasting time series." IEEE International conference on big data (Big Data). 

IEEE, 2019. 

[20] Zheng, Jian, et al. Mar. "Electric Load Forecasting in Smart Grid Using Long-Short-Term-

Memory  

    based Recurrent Neural Network." IEEE Global Smart Grid Conference (GSS),2017 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

  

http://dx.doi.org/10.25098/9.1.29

