
 The Scientific Journal of Cihan University – Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/2.2.33 97

ABSTRACT

String matching became important application nowadays, the increasing of database such as websites,

document, DNA, etc., leads to the urgent needs for string matching; string matching has many

applications such as DNA, protein matching, internet search engine, all these types of application of

string matching, beside the huge amount of database lead to increase the need to fast and efficient

string matching algorithms. This study is about comparing among most well-known string matching

algorithms; it focuses on four types of string matching algorithms, each one of them working in a

different way. The four are tested with four types of data; ASCII (256 character), English alphabet

(26 characters), DNA (4 character), and protein (20 character), with different pattern length (100, 50,

20, 10, 5) results shown based on number of comparisons and time.

Keywords: string matching, DNA, Protein, Boyer-Moore, Knuth-Morris-Pratt, Rabin-Karp.

 الملخص

حمض مطابقة السلاسل اصبحت من التطبيقات المهمة هذه الايام, زيادة قواعد البيانات مثل مواقع صفحات الانترنيت والوثائق وال

النووي .. الخ, كل هذه العوامل ادت الى الحاجة الملحة الى تطبيقات تطابق السلاسل, هناك العديد من التطبيقات المستخدمة في هذا

المجال مثل مطابقة الحمض النووي ومطابقة البروتين ومحركات البحث في الانتريت، كل هذه التطبيفات تتعامل مع كمية هائلة من

يؤدي الى الحاجة الى خوازيمات سريعة وكفوءة لمطابقة السلاسل. هذه الدراسة مبنية على المقارنة بين اربعة من اشهر البيانات مما

الخوارزيمات في مطابقة السلاسل، كل سلسلة من هذه السلاسل تعمل وفق طريقة مختلفة، هذه الخوارزميات الاربعة تم فحص كل

حرف) والحمض ٢٥٦(ASCIIحرف) و احرف ال ٢٦ت وهي: احرف اللغة الانكليزية (واحدة منهم على اربع انواع من البيانا

) النتائج كانت معتمدة ١٠٠, ٥٠, ٢٠, ١٠, ٥احرف)، مع استخدام اطوال مختلفة للسلسة (٢٠حرف) واخيراً البروتين (٤النووي (

 على عدد المقارانات والوقت المستغرق في عملية المقارنة.

ón‚íq@ @
‹Øbmìbè@ð’‹m@ì@çbØó��Üói@ì@@ðäû�ÙïÜó÷@ñŠór�Übà@Ûòì@÷îóibma†@ðä†‹Ø†bîŒ@~@Šb ˆûŠ@ðäbØó�ä‹ @óàbäŠói@óÜ@ÚŽïØóî@ói@òìíi@çbØò�−Œ@ðä†

bØói@a†òŠaíi@ãóÜ@óØ@óîóè@óàbäŠói@ŠûŒ@~@çbØò�−Œ@ðä†‹Øbmìbè@ðØóîóàbäŠói@üi@@òìín�aí‚@ñaì@óäaŠónØbÐ@ìíàóè@ãó÷@~@‡nè@NNN@ðØòìbä@@oŽî†Š
òìŽßó óÜ@pbØò†@ó�Üóàbà@óäbàbäŠói@ãó÷@ðàóuŠó�@~@oŽïäŠónåï÷@Šó�óÜ@çaŠó @ñŠóåŽîì�i@ì@µmû‹q@ðä†‹Øbmìbè@ì@@ðØòìbä@ð’‹m@ðä†‹Øbmìbè@Û@

NçbØò�−Œ@ðä†‹Øbmìbè@üi@@oŽïióè@bäaímói@ì@a‹Žï‚@ðánîŠü�Üó÷@oŽîŒaí‚ò†@aì@óØ@@ñŠbïäaŒ@óÜ@ŠûŒ@ðÙŽî‹i@�óÜ@òìa‹ä@pbïåi@óîòìóåî‰îím@ãó÷@Šó
bïu@ñb�ŽîŠ@ói@pbØò†ŠbØ@óäa�−Œ@ìóÜ@Ûóî@Šóè@@~@ñŠbïäaŒ@ðä†‹Ø@bmìbè@ñŠaíióÜ@ânîŠü�Üó÷@@æî��äbiìbäói@òŠóè@óÜ@Šaíš@ðä†‹Ø†ŠìaŠói@òì@@Œaì

I@@ñ�ïÝ�åï÷@ðäbàŒ@ðäbØónïq@”ïäaìó÷@@~@Œaìbïu@ñbma†@ñŠüu@Šaíš@Šó�óÜ@òìa‹Ø@üi@µåÙ“q@óäbánîŠü�Üó÷@ãóÜ@ÛóîŠóè٢٦@äbàŒ@ì@Hoïq@ðASCII

Comparative Study for String Matching Algorithms

Ammar Waysi AlTuhafi

Computer Science Department - Cihan university- Sulaimaniya, Iraq

dr.ammar.altuhafi@ieee.org

ammar.waysi@sulicihan.edu.krd

PP: 97-107 The Scientific Journal of Cihan University – Sulaimanyia
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

 DOI: http://dx.doi.org/10.25098/2.2.33 98

)٢٥٦ oïq (@@I@ðØòìbä@ð’‹m@�ïq@ì٤oïqI@@µmû‹q@òì@@H٢٠@@I@a‡î‰îŠ†@óÜ@Œaìbïu@ñò�−�ïäbåïèŠbØói@ßó óÜ@~@@Hoïq٥٠, ٢٠, ١٠, ٥ ,

١٠٠ (Nóîó�û‹q@ìó÷@üi@ìa‹äóîb‚@ðmbØ@ì@ç†‹Ø†ŠìaŠói@ÚŽï�ÜóàüØ@Šó�óÜ@òìa‹ä@pbïåi@@@çbØóàb−ó÷@ @

1. INTRODUCTION

String matching is a method of giving two strings – a text and a pattern. String matching used for

search if the pattern is in the text. It is also a part of any text processing editor. It is known as “the

needle in a haystack problem." Generally, there are two types of String Matching: Exact String

Matching and Inexact String Matching; this study focuses on Exact String Matching (ESM)

algorithms. In string matching there are two strings; text and pattern, usually the pattern is shorter

string than the text string, and the job of string matching algorithms is to find the pattern in the text

with shortest time as much as possible [1] .

Within last years, there are many algorithms in String Matching that has been appeared for a different

type of data; and they are; ASCII, English alphabet, DNA, Protein. ASCII code as known consist of

256 characters, English language has 26 characters, DNA consist of 20 characters, and Protein has

four characters. The study is based on making performance comparison among string matching

algorithms and determines their performance with different size and type of data [2].

There are different algorithms that are used in the string matching area such as: Naive, Knuth-Morris-

Pratt (KMP), Boyer-Morro (BM) and Rabin-Karp (RK); these four algorithms considered the most

well-known algorithms in string matching, each one of them work based on different techniques [3].

Therefore, evaluate the performance of these four algorithms can provide a significant estimation of

the performance of other string matching algorithms by using similar techniques.

2. THE ALGORITHMS

The four, tested, algorithms in this research are; Naive, Knuth-Morris-Pratt (KMP), Boyer-Morro

(BM) and Rabin-Karp (RK), the working mechanism of each one will be discussed as following:

2.1. Naïve Algorithm

The naive algorithm or sometimes called brute force algorithms, makes a comparison character by

character of the text T[s...s+m-1] for all s E {0,...,n-m+1} and the pattern p[0...m-1].

The valid shifts found is returned. The problem of this method is its effectiveness.

The naive approach simply tests all the possible placement of Pattern P[1 .. m] relative to text T[1 . .

n]. Specifically, we try shift s = 0, 1, . . n -m, successively and for each shift, s. Compare “T[s +1 . .

s + m]” , “P[1 . . m]”

NAIVE_STRING_MATCHER (T, P)

 n ← length [T]

 m ← length [P]

For s ← 0 to n - m do

If P[1 . . m] = T[s +1 . . s + m]

Then return valid shift s

[4]

 The Scientific Journal of Cihan University – Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/2.2.33 99

The following is the pseudo code for Naïve string matching algorithm:

n ← length [T]

m ← length [P]

for s ← 0 to n-m do

j ← 1

while j ≤ m and T[s + j] = P[j] do

j ← j +1

If j > m then

return valid shift s

return no valid shift exist

2.2. Knuth-Morris-Pratt Algorithm (KMP)

The KMP algorithm has complexity O(N+M), as a linear algorithm. KMP algorithm is contained

from two phases, a searching phase, which is used to find the valid shifts in the text, in this phase the

complexity is O(N), in this phase the comparison between pattern and text usually happened beside

the shifting operation after each comparison process, before searching phase there is a preprocessing

phase, which exists to preprocess the pattern, and also to avoid checking characters in T that we

already know and match a prefix of P, based on a strategy of using information from partial matching

of P. The preprocessing part does not only skip over portions of the text that cannot contain a match,

it also avoids re-checking characters in T that are known [5, 6].

The following is the pseudo code for Naïve string matching algorithm:

KNUTH-MORRIS-PRATT FAILURE (P)

Input: Pattern with m characters

Output: Failure function f for P[i . . j]

i ← 1

j ← 0

f(0) ← 0

while i < m do

 if P[j] = P[i]

 f(i) ← j +1

 i ← i +1

 j← j + 1

else if

 j ← f(j - 1)

else

 f(i) ← 0

 i ← i +1

KNUTH-MORRIS-PRATT (T, P)

Input: Strings T[0 . . n] and P[0 . . m]

Output: Starting index of substring of T matching P

PP: 97-107 The Scientific Journal of Cihan University – Sulaimanyia
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

 DOI: http://dx.doi.org/10.25098/2.2.33 100

f ← compute failure function of Pattern P

i ← 0

j ← 0

while i < length[T] do

 if j ← m-1 then

 return i- m+1 // we have a match

i ← i +1

j ← j +1

else if j > 0

 j ← f(j -1)

 else

 i ← i +1

2.3. Boyer-Moore Algorithm (BM)

The main idea of this algorithm is that the match is performed from right to left. This technique allows

the algorithm to skip more characters than the other algorithms and find the matching faster, for

example if the first matched character of a text is not contained in the pattern P[0..m-1] we can skip

m characters immediately. In O (m) time, scan characters of P, marking which characters of alphabet

appear in P. Boyer-Moore “bad character” rule: if a character of T aligned with last character of P

isn’t in P, then none of the m characters of T (starting with this one) can align with the last character

of P in a substring match [7]. The following is the pseudo code for Naïve string matching algorithm:

Input: Text with n characters and Pattern with m characters

Output: Index of the first substring of T matching P

Compute function last

i ← m-1

j ← m-1

Repeat

 If P[j] = T[i] then

 if j=0 then

 return i // we have a match

 else

 i ← i -1

 j ← j -1

 else

 i ← i + m - Min(j, 1 + last[T[i]])

 j ← m -1

 until i > n -1

Return "no match"

2.4. Rabin Karp (RK)

The Rabin-Karp algorithm uses a totally different technique based on mathematical equations to find

pattern in the text. This method is based on hashing techniques. The Rabin Karp algorithm works by

 The Scientific Journal of Cihan University – Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/2.2.33 101

"fingerprinting" the search string (of length K) and every substring of length K within the haystack,

and compares fingerprints. If it finds a match, it reports success (with high probability). Fingerprinting

is a process in which a single integer is made to represent an entire string of length K.

The probability of error depends on the choice of the fingerprinting function. After computing hash

function h(x) for the pattern P[0...m-1]and the search operation done by using the same hash function

for every substring of length m-1 of the text. The RK as KMP and BM algorithms also uses

preprocessing technique before the search operation. Its preprocessing operation is the hashing of the

pattern, which is O (M) complexity. So, the running time of the algorithm is O (M x (N-M+1)).

However, the algorithms will run with a complexity O(N) [8].

The following is the pseudo code for Rabin-Karp string matching algorithm:

Compute ht (for the first substring of t with m length)

For i = 1 to n − m

If hp = ht

Match t[ii + m] with p, if matched return 1

Else ht = (d ht − t[i + 1] .dm−1 + t[m + i + 1]) mod q

End

3. TESTING ENVIRONMENT

The testing environment involves five types: DNA, Protein, ASCII, Binary and English alphabet,

with different pattern length. All algorithms are performing their search with similar files (as their

text) and similar patterns; the file size is 100 Mega Bytes for each data type. Applying each algorithm

to each data type to find which data type is more useful for which algorithm. The results based on the

speed and the number of comparisons. Figure 1 shows the testing environment.

Figure 1: Testing environment

PP: 97-107 The Scientific Journal of Cihan University – Sulaimanyia
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

 DOI: http://dx.doi.org/10.25098/2.2.33 102

4. RESULTS

The result for each type of data with each algorithms using different pattern length are shown below.

4.1. Protein

Table 1 shows the result of no. of comparisons and the time in milliseconds for the four algorithms

for 100, 50, 20 and 5 characters’ pattern length with DNA characters. Naïve algorithm has the highest

value of number of comparisons and time because the shifting amount, which is done by one shifting

every after every mismatch, Naïve algorithm, in the other hand, KMP algorithm has better

performance in term of number of comparisons, because the good prefix technique in KMP algorithm,

which can cause shifting more than one after mismatch, the BM algorithm has second better result in

term of number of comparisons, BM algorithm has two techniques in shifting, bad character and good

suffix, the combination between these two techniques cause better result comparing to KMP

algorithm, finally RK has best performance in term number of comparisons because the depending

on hash function calculation which has the ability to reduce the number of comparisons based in

mathematical model.

In term of time, BM has better performance because the high shifting based on two techniques, instead

one technique in KMP, the Naïve algorithm needs longer time comparing to BM and KMP algorithm

because the simple shifting after each mismatching consume more time, while the worst algorithm in

term of time is RK, because the long mathematical calculation and produce hash value for the text

needs to long time comparing to simple matching method in the other three algorithms.

No. of

characters
Result Type Naive BM KMP RK

100

No. of

comparisons
105266449 61747464 94996099 1041958

Time in

milliseconds
9531664 3375181 8437954 18438420

50

No. of

comparisons
105266452 64999934 99999978 990845

Time in

milliseconds
8437894 3375157 8281662 18594631

20

No. of

comparisons
105266452 61747464 94996099 1043745

Time in

milliseconds
9531710 4875184 8437945 18438365

Table 1: The results for the four algorithms with DNA characters

 The Scientific Journal of Cihan University – Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/2.2.33 103

4.2. English Letters

Table 2 shows the result of no. of comparisons and the time in milliseconds for the four algorithms

for 100, 50, 20 and 5 characters’ pattern length with English characters. The result of English letters

is close to protein letters because the close number of characters between them, in term of number of

comparisons, still RK algorithm has the best result, then BM algorithm has the second best algorithm,

followed by KMP algorithm, while Naïve algorithm has the worse result in term of number

comparisons, although there are some slightly changes comparing to DNA results.

In term of time still BM algorithm has better performance, and KMP algorithm has second better

performance, while naïve followed, RK algorithm has the worst results.

10

No. of

comparisons
105266452 5987732279 94996099 1042262

Time in

milliseconds
9687960 3875184 8437911 18594644

5

No. of

comparisons
105265784 59875766 94996099 1042303

Time in

milliseconds
9531684 3812673 8437924 18594600

No. of

characters
Result Type Naive BM KMP RK

100

No. of

comparisons
103997688 62501497 96156150 1030140

Time in

milliseconds
9531698 3812679 8281650 18594648

50

No. of

comparisons
103997690 58801497 96156150 1028929

Time in

milliseconds
9219208 3687683 8125400 18438339

20

No. of

comparisons
103997690 58701052 96156150 1029898

Time in

milliseconds
9062959 3625183 8281662 18438411

10
No. of

comparisons
103997692 58900083 96156150 1030334

Table 2: The results for the four algorithms with English characters

PP: 97-107 The Scientific Journal of Cihan University – Sulaimanyia
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

 DOI: http://dx.doi.org/10.25098/2.2.33 104

4.3. DNA

Table 3 shows the result of no. of comparisons and the time in milliseconds for the four algorithms

for 100, 50, 20 and 5 characters’ pattern length with Protein characters. In term number of

comparisons, there are big enhancements, the small number of protein characters (four) produce high

probability to have long good prefix for KMP algorithm and good suffix for BM, which help these

two algorithms to do long skip of character matching after each mismatching, for this reason the

number of comparison for these two algorithm have big enhancements, comparing to protein and

English characters. Although the big enhancements of the number of comparison, the RK algorithm

has second best performance, while KMP has the third best performance, these two algorithms come

after BM algorithm which has the better performance, finally naïve algorithm has the worst results in

term number of comparisons.

In term of time still BM algorithm has the better performance, because the two techniques that used

in BM algorithm, KMP algorithm has second better performance in term of time, naïve algorithm

follow BM and KMP algorithms, while RK still worse performance because the mathematical

operation that hash function needs to.

Time in

milliseconds
9219139 3687655 8125353 18438390

5

No. of

comparisons
103997478 59874351 96156150 1030144

Time in

milliseconds
9219182 3687672 8281658 18594673

No. of

characters
Result Type Naive BM KMP RK

100

No. of

comparisons
133337152 141 74998712 1320212

Time in

milliseconds
14137355 4812710 12031777 18594669

50

No. of

comparisons
133337165 143 74998712 1319680

Time in

milliseconds
14219439 4812728 12031820 18594665

20
No. of

comparisons
133337174 263 74998712 1319092

Table 3: The results for the four algorithms with protein characters

 The Scientific Journal of Cihan University – Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/2.2.33 105

4.4. ASCII

Table 4 shows the result of no. of comparisons and the time in milliseconds for the four algorithms

for 100, 50, 20 and 5 characters’ pattern length with ASCII characters. In term of number of

comparisons RK algorithm has better performance, and BM algorithm has second better performance

in term of number of comparisons, KMP algorithm has the third place, while naïve algorithm has

worse result. The big difference between protein and ASCII results belong to big difference of number

of characters, which cause low probability to produce good prefix in KMP algorithm, and good suffix

in BM algorithm. Although the good suffix of BM algorithm has bad result with big number of

characters such as ASCII (256), the bad character technique can cause good result of skipping.

In term of time, BM algorithm has best performance, followed by KMP and Naïve algorithms, the

worse performance in term of time belongs to RK same other types of data.

Time in

milliseconds
14219477 4750234 11875587 18438399

10

No. of

comparisons
133336601 131 74998712 1318187

Time in

milliseconds
14375637 4875225 12188064 18594669

5

No. of

comparisons
132814224 48749162 74998712 1662286

Time in

milliseconds
14063172 4824363 12060908 18438394

No. of

characters
Result Type Naive BM KMP RK

100

No. of

comparisons
100392433 48889315 99609073 993313

Time in

milliseconds
8750427 8437907 7500357 22813608

50

No. of

comparisons
100392433 48957425 99609073 994417

Time in

milliseconds
8594173 3500170 7500375 22501089

20
No. of

comparisons
100392433 50171259 99609073 993321

Table 4: The results for the four algorithms with ASCII characters

PP: 97-107 The Scientific Journal of Cihan University – Sulaimanyia
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

 DOI: http://dx.doi.org/10.25098/2.2.33 106

5. CONCLUSION

The string matching applications is an integral part in computer science. The recent applications

became much more than text editors, especially in bioinformatics applications, beside search engines.

After testing the most well-known algorithms in string matching with different types of data and

different length of patterns, the result shows the following: the best performance in terms of time is

Boyer-Moore algorithm (with different data types with different pattern length) while Rabin-Karp

algorithm shows best performance in terms of the number of comparisons except with protein BM

has better permanence than RK algorithm.

6. RECOMMENDATIONS

According to the result of the research, the recommendations are the following: for application when

time is the most important factor in string matching, using Boyer-Moore string matching algorithm

is highly recommended. For application which tries to reduce the number of comparisons to the

minimum, using Rabin-Karp algorithm for string matching is highly recommended. Whereas, for

small applications such as text editors where users deal with small amount of text, it is recommended

to use Naive algorithm for string matching, because the implantation is straightforward for this

algorithm as well as the non-existence of pre-processing operation in order to increase the searching

time when having large texts.

Time in

milliseconds
8750388 3500155

7373209

18628709

10

No. of

comparisons
100392433 52271078 99609073 993331

Time in

milliseconds
8594173 3437669 7344078 18594643

5

No. of

comparisons
100392433 54752477 99609073 993632

Time in

milliseconds
1.0625535 4250214 7344040 18750884

 The Scientific Journal of Cihan University – Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/2.2.33 107

REFERENCES

[1] D. Gussfield, "Algorithms on strings, trees, and sequences," Computer Science and

Computional Biology (Cambrigde, 1999), 1997.

 [2] G. Navarro, "A guided tour to approximate string matching," ACM computing surveys

(CSUR), vol. 33, pp. 31-88, 2001.

 [3] C. C.-T. Lecroq. (1997, 22/5). EXACT STRING MATCHING ALGORITHMS. Available:

http://www-igm.univ-mlv.fr/~lecroq/string/

 [4] Oracle. (2016). Comparison: Exact String Match. Available:

http://www.oracle.com/webfolder/technetwork/data-

quality/edqhelp/Content/processor_library/matching/comparisons/exact_string_match.htm

 [5] D. E. Knuth, et al., "Fast pattern matching in strings," SIAM journal on computing, vol. 6, pp.

323-350, 1977.

 [6] K. A. Berman and J. L. Paul, Algorithms: sequential, parallel, and distributed: Course

Technology Ptr, 2005.

 [7] R. S. Boyer and J. S. Moore, "A fast string searching algorithm," Communications of the

ACM, vol. 20, pp. 762-772, 1977.

 [8] C. Charras and T. Lecroq, Handbook of exact string matching algorithms: King's College,

2004.

