The Scientific Journal of Cihan University — Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

4 N

Comparative Study for String Matching Algorithms

Ammar Waysi AlTuhafi

Computer Science Department- Cihan university- Sulaimaniya, Iraq
dr.ammar.altuhafi@ieee.org
ammar.waysi@sulicihan.edu.krd

- /

ABSTRACT

String matching became important application nowadays, the increasing of database such as websites,
document, DNA, etc., leads to the urgent needs for string matching; string matching has many
applications such as DNA, protein matching, internet search engine, all these types of application of
string matching, beside the huge amount of database lead to increase the need to fast and efficient
string matching algorithms. This study is about comparing among most well-known string matching
algorithms; it focuses on four types of string matching algorithms, each one of them working in a
different way. The four are tested with four types of data; ASCII (256 character), English alphabet
(26 characters), DNA (4 character), and protein (20 character), with different pattern length (100, 50,
20, 10, 5) results shown based on number of comparisons and time.

Keywords: string matching, DNA, Protein, Boyer-Moore, Knuth-Morris-Pratt, Rabin-Karp.
oaslalf

oaeall s Gl 5 i JBY) Cladn 1l so Jie cliball ac) 8 50l 5 LY o3 dagall Cilipbail) (e Ciapal Judld) diilas
138 A Aeadieal) Cligalatll (pe 3yl @l) s il) Aslall dalall)l Jal g2l o3a IS &) g5
o Aila 10 e Jabas il o3 JS ety Y1 8 Canall S jaa gy (g sl Aildas 5 (55530 (maand) At Jie Jlaall
D) (e Ry Al e Aine Al all o3 JuDlal) AiiUnal Be S 5 Ry s iy 3l s) Aalall) g0 Lae il
JS Gand i A V) Gl) a1 o3a Adlida 48 yha (385 Jasd Judladl 038 e Al JS el dldae (& Sl 5)20
oaealls (Cisa YOU) ASCIT Ul a5 (isa Y1) a3V 4adll Cajal :oa s bl (e o) 53l g) e agiasanl
Baaine CulS il (Vo v 00 Yo Ve o) Aududl Aalite J) shal aladiiad ma o(Cayal Y o) cpig) 1 sl g (Caa £) 55l

Al Aglee 8 (3 patusall < gl) g i) il axe e

ay
xS g OLSASHAY 9 HERSHAD Gydalle oy ilNS 33ySas) , LS5y LSAR S dallydy A1 USAY A o493 LS ped) 3aSLIgka
COa)LSAd 130190 pdd 4S Add daliydd y3) , LSO pmd) (92)SLIgLD (Sdddellydd g 09giules S19 AIyAiSLE ggedd pdd , i ... (Sogld
JASA OlSos dddols dilollydy pdd ez ydus | Colydiiedd yuwdd (1S &yAdgdd 9 (i g (93,598 § (Sagl (ol (s3SI gLD oy
Shudd 0915 Skl dtogdisigd pdd . GlSo) 93)SIIghd bt Ceutdd Lilgide 9 | o3I A0 C31a50 19 S 55kl 55 S
09 gk SISy Ay OLSoahS Al pnd) gl s ydd , §)kidl) 93,8 LIghd)ladd Wy pIad 50 ASILIgLIAY 0ydd &)l (53383903
ASCII) 9 (S Y1) 53l () (S a9 , ok SLIN3 G332 312 s 0158 G (Sl dilalypSIdd pd Lt ydd

DOI: http://dx.doi.org/10.25098/2.2.33 97

PP: 97-107 The Scientific Journal of Cihan University — Sulaimanyia
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

O T 0) s A gk o il oSy JASAT) (St Y0) (i 09 (St E) (Sogld (i) e 9 (S YOT)
Al) 940 89 91 Al IS 9 53)53y915d S hadS Hhwdd 0910 Sl LSl ()

1. INTRODUCTION

String matching is a method of giving two strings — a text and a pattern. String matching used for
search if the pattern is in the text. It is also a part of any text processing editor. It is known as “the
needle in a haystack problem." Generally, there are two types of String Matching: Exact String
Matching and Inexact String Matching; this study focuses on Exact String Matching (ESM)
algorithms. In string matching there are two strings; text and pattern, usually the pattern is shorter
string than the text string, and the job of string matching algorithms is to find the pattern in the text
with shortest time as much as possible [1] .

Within last years, there are many algorithms in String Matching that has been appeared for a different
type of data; and they are; ASCII, English alphabet, DNA, Protein. ASCII code as known consist of
256 characters, English language has 26 characters, DNA consist of 20 characters, and Protein has
four characters. The study is based on making performance comparison among string matching
algorithms and determines their performance with different size and type of data [2].

There are different algorithms that are used in the string matching area such as: Naive, Knuth-Morris-
Pratt (KMP), Boyer-Morro (BM) and Rabin-Karp (RK); these four algorithms considered the most
well-known algorithms in string matching, each one of them work based on different techniques [3].
Therefore, evaluate the performance of these four algorithms can provide a significant estimation of
the performance of other string matching algorithms by using similar techniques.

2. THE ALGORITHMS

The four, tested, algorithms in this research are; Naive, Knuth-Morris-Pratt (KMP), Boyer-Morro
(BM) and Rabin-Karp (RK), the working mechanism of each one will be discussed as following:

2.1. Naive Algorithm

The naive algorithm or sometimes called brute force algorithms, makes a comparison character by
character of the text T[s...stm-1] for all s E {0,...,n-m+1} and the pattern p[0...m-1].

The valid shifts found is returned. The problem of this method is its effectiveness.

The naive approach simply tests all the possible placement of Pattern P[1 .. m] relative to text T[1 . .
n]. Specifically, we try shift s =0, 1, . . n -m, successively and for each shift, s. Compare “T[s +1 . .
s+m]”, “P[1..m]”

NAIVE STRING MATCHER (T, P)
n < length [T]

m «— length [P]
Fors <— 0ton-mdo

IfP[1.. m]=T[s+]..s+m)]

Then return valid shift s

[4]

98 DOI: http://dx.doi.org/10.25098/2.2.33

The Scientific Journal of Cihan University — Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

The following is the pseudo code for Naive string matching algorithm:
n < length [T]

m « length [P]

for s «<— 0 to n-m do

je1

while j <m and T[s +j] = P[j] do

jejtl

If > m then

return valid shift s

return no valid shift exist

2.2. Knuth-Morris-Pratt Algorithm (KMP)

The KMP algorithm has complexity O(N+M), as a linear algorithm. KMP algorithm is contained
from two phases, a searching phase, which is used to find the valid shifts in the text, in this phase the
complexity is O(N), in this phase the comparison between pattern and text usually happened beside
the shifting operation after each comparison process, before searching phase there is a preprocessing
phase, which exists to preprocess the pattern, and also to avoid checking characters in T that we
already know and match a prefix of P, based on a strategy of using information from partial matching
of P. The preprocessing part does not only skip over portions of the text that cannot contain a match,
it also avoids re-checking characters in T that are known [5, 6].

The following is the pseudo code for Naive string matching algorithm:

KNUTH-MORRIS-PRATT FAILURE (P)
Input: Pattern with m characters
Output: Failure function f for P[i. . |]
11
j<0
f(0) <0
while 1 <m do
if P[j] = P[i]
(i) <« j +1
1—1+1
j(— _] +1
else if
j—1g-1
else
fi) — 0
1—1+1

KNUTH-MORRIS-PRATT (T, P)
Input: Strings T[0 .. n] and P[0 . . m]
Output: Starting index of substring of T matching P

DOI: http://dx.doi.org/10.25098/2.2.33 99

PP: 97-107 The Scientific Journal of Cihan University — Sulaimanyia
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

f < compute failure function of Pattern P
10
j<0
while 1 <length[T] do
if j < m-1 then
return i- m+1 // we have a match
1—1+1
jejtl
elseifj >0
j<—1G-1)
else
1—1+1

2.3. Boyer-Moore Algorithm (BM)

The main idea of this algorithm is that the match is performed from right to left. This technique allows
the algorithm to skip more characters than the other algorithms and find the matching faster, for
example if the first matched character of a text is not contained in the pattern P[0..m-1] we can skip
m characters immediately. In O (m) time, scan characters of P, marking which characters of alphabet
appear in P. Boyer-Moore “bad character” rule: if a character of T aligned with last character of P
isn’t in P, then none of the m characters of T (starting with this one) can align with the last character
of P in a substring match [7]. The following is the pseudo code for Naive string matching algorithm:

Input: Text with n characters and Pattern with m characters
Output: Index of the first substring of T matching P
Compute function last
1< m-1
j—m-1
Repeat
If P[j] = T[1] then
if j=0 then
return i // ' we have a match
else
1—1-1
jei-l
else
i<« 1+m-Min(j, 1 + last[T[i]])
je—m-1
until i >n -1
Return "no match"

2.4. Rabin Karp (RK)

The Rabin-Karp algorithm uses a totally different technique based on mathematical equations to find
pattern in the text. This method is based on hashing techniques. The Rabin Karp algorithm works by

100 DOI: http://dx.doi.org/10.25098/2.2.33

The Scientific Journal of Cihan University — Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

"fingerprinting" the search string (of length K) and every substring of length K within the haystack,
and compares fingerprints. If it finds a match, it reports success (with high probability). Fingerprinting
is a process in which a single integer is made to represent an entire string of length K.

The probability of error depends on the choice of the fingerprinting function. After computing hash
function h(x) for the pattern P[0...m-1]and the search operation done by using the same hash function
for every substring of length m-1 of the text. The RK as KMP and BM algorithms also uses
preprocessing technique before the search operation. Its preprocessing operation is the hashing of the
pattern, which is O (M) complexity. So, the running time of the algorithm is O (M x (N-M+1)).
However, the algorithms will run with a complexity O(N) [8].

The following is the pseudo code for Rabin-Karp string matching algorithm:

Compute ht (for the first substring of t with m length)
Fori=1ton—m

If hp =ht

Match t[i. . . .i + m] with p, if matched return 1

Else ht=(dht—t[i+ 1] .dm—1 +t[m+1i+ 1]) mod q
End

3. TESTING ENVIRONMENT

The testing environment involves five types: DNA, Protein, ASCII, Binary and English alphabet,
with different pattern length. All algorithms are performing their search with similar files (as their
text) and similar patterns; the file size is 100 Mega Bytes for each data type. Applying each algorithm
to each data type to find which data type is more useful for which algorithm. The results based on the
speed and the number of comparisons. Figure 1 shows the testing environment.

Pattern

Naive

BM

KMP

RK

Figure 1: Testing environment

DOI: http://dx.doi.org/10.25098/2.2.33 101

PP: 97-107 The Scientific Journal of Cihan University — Sulaimanyia
Volume (2), Issue (2), December 2018

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

4. RESULTS

The result for each type of data with each algorithms using different pattern length are shown below.

4.1. Protein

Table 1 shows the result of no. of comparisons and the time in milliseconds for the four algorithms
for 100, 50, 20 and 5 characters’ pattern length with DNA characters. Naive algorithm has the highest
value of number of comparisons and time because the shifting amount, which is done by one shifting
every after every mismatch, Naive algorithm, in the other hand, KMP algorithm has better
performance in term of number of comparisons, because the good prefix technique in KMP algorithm,
which can cause shifting more than one after mismatch, the BM algorithm has second better result in
term of number of comparisons, BM algorithm has two techniques in shifting, bad character and good
suffix, the combination between these two techniques cause better result comparing to KMP
algorithm, finally RK has best performance in term number of comparisons because the depending
on hash function calculation which has the ability to reduce the number of comparisons based in
mathematical model.

In term of time, BM has better performance because the high shifting based on two techniques, instead
one technique in KMP, the Naive algorithm needs longer time comparing to BM and KMP algorithm
because the simple shifting after each mismatching consume more time, while the worst algorithm in
term of time is RK, because the long mathematical calculation and produce hash value for the text
needs to long time comparing to simple matching method in the other three algorithms.

Table 1: The results for the four algorithms with DNA characters

No. of Result Type Naive BM KMP RK
characters
No. of 105266449 61747464 94996099 1041958
comparisons
100
Time in 9531664 3375181 8437954 18438420
milliseconds
No. of
. 105266452 64999934 99999978 990845
COmparlSOnS
50
Time in 8437894 3375157 8281662 18594631
milliseconds
No. of
. 105266452 61747464 94996099 1043745
COmparlSOnS
20
Time in 9531710 4875184 8437945 18438365
milliseconds

102

DOI: http://dx.doi.org/10.25098/2.2.33

The Scientific Journal of Cihan University — Sulaimanyia PP: 97-107
\ SICUS, Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)
No. of
. 105266452 5987732279 94996099 1042262
comparisons
10
Time in 9687960 3875184 8437911 18594644
milliseconds
No. of
. 105265784 59875766 94996099 1042303
comparisons
5
Time in 9531684 3812673 8437924 18594600
milliseconds
4.2. English Letters

Table 2 shows the result of no. of comparisons and the time in milliseconds for the four algorithms
for 100, 50, 20 and 5 characters’ pattern length with English characters. The result of English letters
is close to protein letters because the close number of characters between them, in term of number of
comparisons, still RK algorithm has the best result, then BM algorithm has the second best algorithm,
followed by KMP algorithm, while Naive algorithm has the worse result in term of number

comparisons, although there are some slightly changes comparing to DNA results.

In term of time still BM algorithm has better performance, and KMP algorithm has second better
performance, while naive followed, RK algorithm has the worst results.

Table 2: The results for the four algorithms with English characters

No. of Result Type Naive BM KMP RK
characters
No. of 103997688 62501497 96156150 1030140
COmparlSOnS
100
Time in 9531698 3812679 8281650 18594648
milliseconds
No. of
. 103997690 58801497 96156150 1028929
COmparlSOnS
50
Time in 9219208 3687683 8125400 18438339
milliseconds
No. of
. 103997690 58701052 96156150 1029898
COmparlSOnS
20
Time in 9062959 3625183 8281662 18438411
milliseconds
No. of
10 . 103997692 58900083 96156150 1030334
comparisons

DOI: http://dx.doi.org/10.25098/2.2.33

103

PP: 97-107 The Scientific Journal of Cihan University — Sulaimanyia
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Time in 9219139 3687655 8125353 18438390

milliseconds

No. of

. 103997478 50874351 96156150 1030144

comparisons

5

Time in 9219182 3687672 8281658 18594673

milliseconds

4.3. DNA

Table 3 shows the result of no. of comparisons and the time in milliseconds for the four algorithms
for 100, 50, 20 and 5 characters’ pattern length with Protein characters. In term number of
comparisons, there are big enhancements, the small number of protein characters (four) produce high
probability to have long good prefix for KMP algorithm and good suffix for BM, which help these
two algorithms to do long skip of character matching after each mismatching, for this reason the
number of comparison for these two algorithm have big enhancements, comparing to protein and
English characters. Although the big enhancements of the number of comparison, the RK algorithm
has second best performance, while KMP has the third best performance, these two algorithms come
after BM algorithm which has the better performance, finally naive algorithm has the worst results in
term number of comparisons.

In term of time still BM algorithm has the better performance, because the two techniques that used
in BM algorithm, KMP algorithm has second better performance in term of time, naive algorithm
follow BM and KMP algorithms, while RK still worse performance because the mathematical
operation that hash function needs to.

Table 3: The results for the four algorithms with protein characters

No. of Result Type Naive BM KMP RK
characters
No. of 133337152 141 74998712 1320212
COmparlSOnS
100
Time in 14137355 4812710 12031777 18594669
milliseconds
No. of 133337165 143 74998712 1319680
COmparlSOnS
50
Time in 14219439 4812728 12031820 18594665
milliseconds
20 No. of 133337174 263 74998712 1319092
COmparlSOnS

104 DOI: http://dx.doi.org/10.25098/2.2.33

The Scientific Journal of Cihan University — Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Time in 14219477 4750234 11875587 18438399
milliseconds
No. of 133336601 131 74998712 1318187
comparisons
10
Time in 14375637 4875225 12188064 18594669
milliseconds
No. of
. 132814224 48749162 74998712 1662286
comparisons
5
Time in 14063172 4824363 12060908 18438394
milliseconds
4.4. ASCII

Table 4 shows the result of no. of comparisons and the time in milliseconds for the four algorithms
for 100, 50, 20 and 5 characters’ pattern length with ASCII characters. In term of number of
comparisons RK algorithm has better performance, and BM algorithm has second better performance
in term of number of comparisons, KMP algorithm has the third place, while naive algorithm has
worse result. The big difference between protein and ASCII results belong to big difference of number
of characters, which cause low probability to produce good prefix in KMP algorithm, and good suffix
in BM algorithm. Although the good suffix of BM algorithm has bad result with big number of
characters such as ASCII (256), the bad character technique can cause good result of skipping.

In term of time, BM algorithm has best performance, followed by KMP and Naive algorithms, the
worse performance in term of time belongs to RK same other types of data.

Table 4: The results for the four algorithms with ASCII characters

No. of Result Type Naive BM KMP RK
characters
No. of 100392433 48889315 99609073 993313
COmparlSOnS
100
Time in 8750427 8437907 7500357 22813608
milliseconds
No. of
. 100392433 48957425 99609073 994417
COmparlSOnS
50
Time in 8594173 3500170 7500375 22501089
milliseconds
No. of
20 . 100392433 50171259 99609073 993321
COmparlSOnS

DOI: http://dx.doi.org/10.25098/2.2.33 105

PP: 97-107 The Scientific Journal of Cihan University — Sulaimanyia
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Time in 7373209
o 8750388 3500155 18628709
milliseconds
No. of 100392433 52271078 99609073 993331
comparisons
10
Time in 8594173 3437669 7344078 18594643
milliseconds
No. of
. 100392433 54752477 99609073 993632
COmparlSOnS
5
Time in 1.0625535 4250214 7344040 18750884
milliseconds

S. CONCLUSION

The string matching applications is an integral part in computer science. The recent applications
became much more than text editors, especially in bioinformatics applications, beside search engines.
After testing the most well-known algorithms in string matching with different types of data and
different length of patterns, the result shows the following: the best performance in terms of time is
Boyer-Moore algorithm (with different data types with different pattern length) while Rabin-Karp
algorithm shows best performance in terms of the number of comparisons except with protein BM
has better permanence than RK algorithm.

6. RECOMMENDATIONS

According to the result of the research, the recommendations are the following: for application when
time is the most important factor in string matching, using Boyer-Moore string matching algorithm
is highly recommended. For application which tries to reduce the number of comparisons to the
minimum, using Rabin-Karp algorithm for string matching is highly recommended. Whereas, for
small applications such as text editors where users deal with small amount of text, it is recommended
to use Naive algorithm for string matching, because the implantation is straightforward for this
algorithm as well as the non-existence of pre-processing operation in order to increase the searching
time when having large texts.

106 DOI: http://dx.doi.org/10.25098/2.2.33

The Scientific Journal of Cihan University — Sulaimanyia PP: 97-107
Volume (2), Issue (2), December 2018
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

REFERENCES

[1]

[7]

[8]

D. Gussfield, "Algorithms on strings, trees, and sequences," Computer Science and
Computional Biology (Cambrigde, 1999), 1997.

G. Navarro, "A guided tour to approximate string matching," ACM computing surveys
(CSUR), vol. 33, pp. 31-88, 2001.

C. C.-T. Lecroq. (1997, 22/5). EXACT STRING MATCHING ALGORITHMS. Available:
http://www-igm.univ-mlv.fr/~lecrog/string/

Oracle. (2016). Comparison: Exact String Match. Available:
http://www.oracle.com/webfolder/technetwork/data-
quality/edghelp/Content/processor_library/matching/comparisons/exact_string match.htm

D. E. Knuth, et al., "Fast pattern matching in strings," SIAM journal on computing, vol. 6, pp.
323-350, 1977.

K. A. Berman and J. L. Paul, Algorithms: sequential, parallel, and distributed: Course
Technology Ptr, 2005.

R. S. Boyer and J. S. Moore, "A fast string searching algorithm," Communications of the
ACM, vol. 20, pp. 762-772, 1977.

C. Charras and T. Lecroq, Handbook of exact string matching algorithms: King's College,
2004.

DOI: http://dx.doi.org/10.25098/2.2.33 107

