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Abstract: 
 

Database performance optimization involves intertwining developmental efforts with challenges. 

Core to this field are index structures, notably the B+-Tree technique, which enhances database 

performance by mapping keys to their locations regardless of data distribution. Although the B+-Tree 

improves query performance, it has inherent limitations affecting overall efficiency. The rise in data 

volume intensifies indexing complexities. Machine Learning (ML) emerges as a potent approach to 

rejuvenate legacy Database Management System (DBMS) components. A notable innovation is the 

"Learning Indexes" paradigm, viewing indexes as predictive models anticipating key locations in 

datasets, akin to Cumulative Distribution Functions (CDF). This study serves as a survey, exploring 

technologies underpinning learned-index paradigms and comparing them with traditional database 

indexing techniques. Through meticulous analysis, it unravels intricacies of both traditional and 

learned indexing paradigms, equipping aspiring analysts with a panoramic understanding. This 

underscores the imperative of charting a path for future advancements within this transformative 

domain. 
 

Keywords: Index Terms, Learned-Indexes, Database Indexing, Query Performance, Complexity 

Analysis, Taxonomy. 
 

 الملخص: 
 

يعد أداء و كفاءة قاعدة البيانات و ودقتها مجالًا أساسياا، ويرتبط بشكل معقد بتحديات تطويرها. في جوهرها، تعمل هياكل الفهرس 

النظر عن  (B+-Tree) مثل البيانات لمواقعها بغض  المفاتيح  البيانات بشكل كبير من خلال تعيين  القوية على تحسين أداء قاعدة 

على تحسين أداء الًستعلام، إلً أنها تواجه قيوداا متأصلة تؤثر على كفاءة قاعدة البيانات.   (B+-Tree) توزيع البيانات. بينما تعمل

ا مع زيادة حجم البيانات ، مما يؤدي إلى تصاعد التعقيدات في الفهرسة. ولمواجهة هذه التحديات،  تصبح هذه القيود أكثر وضوحا

الآل التعلم  من  الناشئة  الأساليب  القديمة (Machine Learning) يتستفيد  البيانات  قواعد  إدارة  أنظمة  أحد  (DBMS). لتنشيط 

متنامٍ وابتكار ثوري في بنية هياكل الفهرس. الًبتكارات الواعدة في هذا المجال هو ظهور "الفهارس المتعلمة"، وهو مجال بحثي  

(.  CDFويرى هذا المنظور الجديد أن "الفهارس هي نماذج"، يمكنها التنبؤ بذكاء مواقع المفاتيح باستخدام وظائف التوزيع التراكمي )

يؤدي هذا إلى إعادة تصور الفهارس ككيانات قابلة للتدريب، مما قد يؤدي إلى تحسين كفاءة الًستعلام، خاصة بالنسبة لمجموعات 

 البيانات الكبيرة. في حين أن الفهارس المتعلمة واعدة، فإن التحقيقات الشاملة في هذا المجال الناشئ محدودة. لذا هذه الدراسة بمثابة

بهياكل   ة ودراسة استقصائية شاملة مع تحليلٍ شامل وعميق، واستكشاف لأحدث تقنيات الفهارس المتعلمة، ومقارنتهامراجعة شامل
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التقليدية، مما يزود  المتعلمة والفهرسة  الفهارس  الدقيق، يكشف عن تعقيدات نماذج  التحليل  الشائعة. ومن خلال  التقليدية  الفهرسة 

 .المحللين الطموحين بفهم بانورامي. وهذا يؤكد ضرورة رسم مسار للتقدم المستقبلي في هذا المجال التحويلي
 

 الفهارس المستفادة، فهرسة قاعدة البيانات، أداء الاستعلام، تحليل التعقيد، التصنيف.  ،مصطلحات الفهرس :الكلمات المفتاحية
 

 : پوختە
 

داتابهيس بوارێکی بنهڕەتييه، به شێوەيهکی ئاڵۆز پهيوەنديدارە به ئالنگاريهکانی گهشهپێدان و پێشخستنيهوە.  کارايی و چووستيی  

وەکو )ئيندێکس(  فهرههنگۆك  پێکهاتهکانی  گهشهسهندنهکهيدا،  ناوەڕۆکی  چووستيی   (B+-Tree) له  بهرچاو  شێوەيهکی  به  که 

داتابهيس بهرز دەکهنهوە به نهخشهکێشانی کليلی تۆمارەکان بۆ شوێنهکانيان بهبێ گوێدانه دابهشبوونی داتای کليلهکان. له کاتێکدا 

چووستيی پرسيار )کويری( باشتر دەکات، ڕووبهڕووی سنوورداربوونی سروشتی دەبێتهوە که کاريگهری لهسهر  B+-Tree که

قهبارەی  زيادبوونی  لهگهڵ  دەردەکهون  زياتر  سنووردابوونانه  ئهم  ههيه.  داتابهيس  زيادبوونی    کارايی  هۆی  دەبێته  که  داتاکان، 

 Machine) ئاڵۆزييهکان له ئيندێکس کردندا. بۆ چارەسهرکردنی ئهم ئاڵنگاريانه، ڕێبازە نوێيه سهرههڵداوەکان، فێربوونی ئامێر

Learning)  ( بهکاردەهێنن بۆ زيندووکردنهوەی سيستهمی بهڕێوەبردنی داتابهيسDBMS داهێنانێکی ئومێدبهخش لهم بوارەدا .)

(، که بوارێکی توێژينهوەی گهشهسهندووە ونوێگهريهکی شۆرش ئامێزە له Learned Indexسهرههڵدانی "ئيندێکسی فێربوو"ە )

به شێوەيهکی زيرەك پێشبينی شوێنی   پێکهاتهی ئيندێکسهکاندا. ئهم ديدگا نوێيه پێی وايه که "ئيندێکسهکان مۆدێلن"، که دەتوانن 

لهم گۆشهنيگايهوە ئيندێکسهکان وەك  يهکهی ڕاهێنراو،   (.CDFنی نهخشهکانی دابهشبوونی کهڵهکهبوو )کليلهکان بکهن به بهکارهێنا

ئيندێکسه  که  کاتێکدا  له  گهورەکان.  داتا  لهسهرکۆمهڵه  تايبهت  به  دەکهنهوە،  بهرز  کويرييهکان  کارايی  زۆرەوە  ئهگهرێکی  به 

سۆنگهيه لهم  ههر  سنووردارە.  نوێگهريهدا  ئاڕاسته  لهم  گشتگيرەکان  لێکۆڵينهوە  ئومێدبهخشن،  توێژينهوەيه  فێربووەکان  ئهم  وە، 

ئيندێکسه   پێشنيارکراوەکانی  تهکنيکه  نوێترين  لهسهر  قوڵ  شيکاری  شانبهشانی  گشتگيرە  تهواو  لێکۆڵينهوەيهکی  و  پێداچوونهوە 

اری وردەوە، ئاڵۆزييهکانی مۆدێلی فێربووەکان و بهراوردکردنيان لهگهڵ پێکهاته باوە دێرينهکانی ئيندێکسکردن. له ڕێگهی شيک 

دابين دەکات بۆ شرۆڤهکار و شيکارە   ئيندێکسه فێربووەکان و ئيندێکسه دێرينهکان ئاشکرا دەکات، که تێگهيشتنێکی پانۆرامايی 

 ئومێدخوازەکان. ئهمهش جهخت لهسهر پێويستی داڕشتنی ڕێگايهك بۆ پێشکهوتنی داهاتوو لهم بوارە گۆڕانکارييهدا دەکاتهوە. 
 

 . یمۆنۆ تاکس  ،کانیيەزڵۆئا  یکاري ش  ار،يپرس  یداەئ  ،ەدراوەبنک   یکسکردن ێند يئ  کس،ێ نديئ   نیربوو ێف   ،کسێ نديئ   ەیزاراو کليلە وشە:
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INTRODUCTION 
 

Modern databases are ubiquitous, impacting every facet of our lives. Data is considered a valuable 

organizational asset, with Database Management Systems (DBMS) storing, retrieving, and 

processing data to inform decisions efficiently and conveniently [1-3]. A key challenge in databases 

is performance, primarily tied to query processing. Enhancing query execution directly betters 

database performance. Indexes, supplementary structures linked to data files, enable efficient access 

methods. [1-5]. Indexes remain a potent technique significantly boosting query performance. 

Indexing links keys to related data record locations, associating each key with a reference to a full 

record in the database file. [1, 2, 5, 6]. The B+-tree and Hash-table are common index files, serving 

as models that map keys to records regardless of key distribution. Although indexes reduce query 

response time, they have drawbacks impacting database performance. Additional space required for 

index files poses a size challenge, and creating multiple indexes for frequently used fields can burden 

the query optimizer. [7, 8]. Amidst escalating data volumes and diversity, indexing challenges grow. 

Recent research delves into machine learning to enhance legacy DBMS components, such as 

Learning Indexes, a novel approach for query performance improvement. Learning Indexes deploy 

machine learning models to predict record positions for specific keys, leveraging data distribution. 

This approach considers indexes as models mapping keys to records, with potential for model 

upgrades [6, 9-11]. Being a new trend, there's limited high-level guidance available. This survey 

explores the popular state-of-the-art in Learned Indexes, encompassing principles, structure, 

procedures, database indexing, and traditional methods. This work aids researchers entering this field 

and offers a taxonomy for reviewed Learned Index Techniques. The paper's structure is as follows: 

Section two presents the Problem Description, followed by the literature review in section three. 

Section four offers the background review. Section five is divided into two parts: the first part includes 

critical discussion and illustrative explanation, while the second part presents theoretical results 

through summary tables and a taxonomy. The paper concludes with section six, which contains the 

conclusion and future work. 
 

1. PROBLEM DESCRIPTION (SURVEY QUESTION 
 

In nascent trends, initial resources like surveys or taxonomies might be lacking. Similarly, the emerging 

area of Learned Indexes faces a scarcity of comprehensive guidance. This study aims to illuminate the core 

concepts of Learned Indexes, presenting state-of-the-art advancements with crucial details. Additionally, a 

foundational taxonomy for these techniques is established.. 
 

2. REVIEWED LITERATURES 
 

Learning-based structures, such as the learnt B-tree, are being investigated by the Database and Machine 

Learning communities, with the goal of upgrading conventional indexes with learning-based models to achieve 

higher time and space efficiency than previously known methods. 
 

According to (Kraska et al., 2018)[6], indexes function as models, with the B+-tree index resembling the 

(CDF) cumulative distribution function. They introduce the Recursive Model Index (RMI), which employs a 

learning model to predict page IDs in an in-memory framework. They further apply this to the Learned Hash-

Map (Hash-Model Index), using hash functions to uniformly distribute keys in hash buckets, reducing conflicts 

[6]. Additional to the previous idea, they also proposed a Learned Bloom Filter that consists of a Neural 

http://dx.doi.org/10.25098/8.1.30
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Network as initial-filter (pre-filter [12]) comes before an ultimately small Bloom Filter as a secondary-filter 

(backup-filter [12]). that also learned by observing the Query Distribution History for differentiation among 

the key and non-key [6]. 
 

Following (Michael Mitzenmacher, 2018)[12] 's analytical explanation of the proposed learned Bloom 

Filter in [6] he enhanced it further. In (Mitzenmacher, 2019)[13] he introduced the Optimized Learning Bloom 

Filter (Sandwiched Learned Bloom Filter) This approach employs an extra bloom filter before the learned 

prefilter, passing only positive queries to the learned prefilter, followed by the backup bloom filte [13]. 
 

A learnt index (Doraemon) was presented by (C. Tang, Z. Dong, M. Wang, Z. Wang, and H. J. a. p. a. Chen, 

2019)[14] for dynamic workloads as a solution to the shifting data distribution issue that leads to model 

retraining. By utilizing the prior model structure for access patterns and data distribution that are comparable 

[14]. 
 

The learning index Fitting-tree, detailed in (Galakatos et al., 2019)[15], offers robust error boundaries, 

predictable efficiency, and two data insertion methods. Fitting-tree employs in-place insertion with additional 

space (ε) to avoid page errors. For large segments, insertion cost might be notable. The delta insertion technique 

maintains a fixed-size buffer where ordered keys are inserted. Upon buffer limit, segments split and merge 

[15]. 
 

The Alex-index proposed in (J. Ding et al., 2020)[16], similarly reserves space for inserted keys like Fitting-

tree. However, in Alex-index, reserved space is distributed, directly placing keys in the predicted location. If 

occupied, gaps are added (gapped array) or the array grows (packed memory array). This design flexibility 

aids in balancing space and efficiency trade-offs [16]. 
 

Addressing the fully-dynamic indexable dictionary problem, (P. Ferragina and G. J. P. o. t. V. E. 

Vinciguerra, 2020)[17] introduced the PGM-index. This learning structure employs a bottom-up approach to 

recursively generate a multi-level index model. Three PGM-index versions are presented: one with ad-hoc 

compression for space efficiency, one adaptable to query distribution, and one optimizing itself within 

specified space or query time constraints [17]. 
 

(A. Kipf et al., 2020)[18] proposed the RadixSpline (RS); a learning index that could be constructed in a 

single-pass through a sorted data, whereas with a fixed amount of effort per additional element, unlike the prior 

techniques. In terms of both size and search efficiency, they have competed with the latest learning index 

models such as RMI from [6] Notably, RS has primarily two parameters, as highlighted in their evaluation 

[18]. 
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3. BACKGROUND OVERVIEW 
 

Databases hold data as records in files, often on secondary storage like hard disks for long-term storage. 

Transient data, parts of persistent data, are frequently accessed and processed in primary storage (e.g., main 

memory) during program runtime, with a short lifespan. [3]. Indexes are secondary access structures that aid 

in quick retrieval of field-based records from larger file records. Similar to a textbook's index aiding content 

search, a database's index fulfills a comparable role. Notably smaller than the book, the index reduces effort 

required [1]. Indexes typically store key values and a few attributes, using significantly less memory than the 

entire file. This enables creation of an index that loads into main memory, boosting processing efficiency for 

large disk-stored files [2]. 
 

3.1. MOST POPULAR TRADITIONAL INDEX 
 

There are deferent kinds of index such as range index structure (e.g., B+-Tree Index), point-index (e.g., 

Hash-map), and record existent indicators (e.g., BitMap-Index, Bloom filter) [6]. Below is the most two 

popular and common traditional index structures (B+-Tree Index and Hash-map): 
 

3.1.1. B+-TREE INDEX 
 

The widely used B+-Tree index enhances query processing [16, 19]. It's a balanced-height lookup tree, 

directing record lookups based on field values [2, 3]. B+-Tree maintains a balanced shape, with internal nodes 

having ⌈𝑛 ∕  2⌉ to 𝑛 children, where 𝑛 signifies the tree order. While the root holds 2 to 𝑛 children [1, 2, 16], 

Leaf nodes store real data pointers and form a doubly linked list for random and sequential access [16, 19]. 

The B+-Tree s a generic structure without assumptions about key distribution [19, 20]. 
 

3.1.2. BITMAP INDEX 
 

Bitmap indexing is suitable for relations with a considerable number of records, especially for columns with 

limited unique values. In a bitmap index, each record is assigned an ID from 0 to 𝑛, which maps to a physical 

address including block numbers and offsets [3]. A bitmap index employs bit arrays, with an attribute-based 

index using a bitmap for each attribute value. These bitmaps have the same number of bits as the relation's 

record count. Initially set to 0, if record 𝑖 of attribute A has value 𝑣𝑗, the bitmap for 𝑣𝑗 sets the corresponding 

bit to 1. Bitmap indexes excel in selections, particularly involving multiple key selections [1]. To verify a 

selection, intersect bitmaps of key values, creating a new bitmap with a bit set to 1 if the corresponding bits in 

input bitmaps are all 1s, else it's 0. [1, 3]. 
 

3.1.3. BLOOM FILTER 
 

A Bloom filter is a compact structure to check set membership. Using an 𝑚-bit array and 𝑘 hashing 

functions, keys are mapped to array positions. Initially, all bits are 0. Adding a member sets bits at hash 

function addresses. To verify membership, a key's hash functions return positions. If any bit is 0, the key is 

not present. While Bloom filters prevent false negatives, they can lead to false positives. A strong hash function 

for point indexes has fewer collisions, while for a Bloom filter, it has more key and non-key collisions, and 

fewer key-non-key collisions [1, 6].  
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3.1.4. HASH INDEX (HASH MAP) 
 

A Hash index consists of an array of pointers, or hash buckets, storing addresses pointing to linked lists of 

keys  [21]. Hash indexes are crucial for point lookups in DBMS. They map keys to array positions using hash 

functions. Efficient implementation aims to avoid many keys mapping to the same location, termed collisions 

[6]. 
 

3.2. LEARNING BASE INDEX 
 

Traditional indexes lack data distribution use. Learning-based indexes employ machine learning, diverging 

from B+-Tree and Hash indexes. They aim for accurate data representation, enhancing efficient indexing [10]. 

Indexes are functions mapping keys to values for range, Hash, or Bitmap indexing [14]. 
 

3.2.1. MAIN CONCEPTS 
 

3.2.1.1. UTILIZING MACHINE LEARNING TECHNIQUES 
 

Machine Learning (ML) enables computers to learn without programming, encompassing AI, neuroscience, 

and more. It simplifies problem-solving by creating models from data [22, 23]. ML methods, including neural 

networks, construct the Learning Based Index by approximating CDF [6]. Figure 1 Demonstrates the Learned 

indexes compared to B-Tree index.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1: (a) B-Trees indexes, (b) Learned indexes [6]. 

Approximating the (CDF) Cumulative Distribution Function  
 

The CDF approximation maps keys to positions in an array, resembling the standard statistical CDF. The 

traditional CDF, found in probability and statistics, represents the likelihood of values being less than a given 

key [10, 24, 25]. It uniquely characterizes probability distributions on real numbers[25, 26]. The CDF for some 

sample data from [10] is shown in Figure 2.  
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Figure 2: The cumulative distribution function (CDF) view of a sorted array [10]. 

3.3. LEARNING BASE INDEX STATE OF THE ART 
 

Learned indexes, view indexes as distributions mapping keys to locations, approximated using ML models. 

They can be categorized into two groups: Fixed (Static) Learned Indexes and Dynamic Learned Indexes. Static 

indexes only support read operations, which limits their usability, while Dynamic indexes enable read-write 

operations and query pattern adaptation. However, Dynamic Learned Indexes face challenges, including 

retraining models for changing data distributions and the associated costs. This hinders their practicality in 

real-world dynamic workloads [14, 16, 17]. Therefore, as an attempt to overcome these defects, some of the 

following studies propose techniques within the framework of a Dynamic Learned Index. 
 

3.3.1. RECURSIVE MODEL INDEX (RMI) 
 

One key finding from [6] is that the complexity of the CDF requires a hierarchical approach for accuracy. 

The Recursive Model Index (RMI) is introduced, consisting of stages of regression models. When a query 

arrives, it's processed through each stage to estimate the key's position. At stage 𝑙, 𝑀𝑙 models exist, with each 

stage's model trained iteratively with loss 𝐿1 such that 𝑓0 is initialized [6]. The RMI differs from traditional 

tree indexes: 1- It forms a Direct Acyclic Graph (DAG) structure. 2- Uneven coverage of records by models is 

allowed. 3- Stage predictions aren't position estimates, but expert selections. 4- Max-error is unpredictable. 5- 

Its size is fixed by total variables in models and final stage errors. 6- No inter-phase searches occur. RMI lacks 

data update support and is limited for secondary indexes [6]. See Figure 3 for visual reference 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Recursive Model Index (RMI) [6]. 
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3.3.2.HYBRID INDEXES 
 

The Hybrid Index, another static learned index introduced in [6], builds on RMI's advantage of 

using different model structures across stages. Smaller neural nets (e.g., ReLU1) are suitable for 

complex data distributions in upper stages, while basic linear regression models are efficient for 

bottom stages. Extremely complex data might even resort to standard B-Trees at the lowest stage. See 

Figure 4 for the training process (Algorithm-1). Hybrid indexes can restrict search space per key 

based on the model used. Parameters like stage count, width, neural net configuration, and error 

threshold can be optimized through grid search. If learning data distribution is impractical, all models 

are swapped with B-Trees, making the worst-case performance comparable. Some overhead may 

occur between phases, but overall performance is similar [6]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Algorithm 1: Hybrid End-To-End Training [6] 

3.3.3. HASH-MODEL INDEX 
 

According to [6], a method for better hash function training involves learning the CDF of data key 

distribution. Contrary to range indexes, they avoid compactly storing records or strictly sorting them. 

Under static learned indexes, the CDF is scaled to the desired hash map size 𝑀 using (ℎ(𝐾)  =

 𝐹(𝐾) ∗ 𝑀) with key 𝐾 as the Hash-Model Index's hash function. Conflicts are minimized if the 

model 𝐹 accurately learns the CDF. This hash function is independent of Hash-map architecture and 

compatible with various methods [6]. RMI's recursive model design is applied. Index size and 

efficiency have a trade-off influenced by the dataset and model, similar to RMI [6]. Inserts in hash-

model indexes mirror traditional Hash-maps. A key is hashed using h(k), and conflicts are handled 

by the Hash-map algorithm. The learned hash function maintains efficiency, and inserts follow a 

distribution akin to data distribution [6].  
 

 

ALGORITHM 1: HYBRID END-TO-END TRAINING [6] 

 Input: int threshold, int stages[], NN_complexity 

 Data: record data[], Model index[][] 

 Result: trained index 

1 𝑀 = stages.size; 

2 tmp_records[][]; 

3 tmp_records[1][1] = all data; 

4 for 𝑖 ← 1 to 𝑀 do 

5  for 𝑗 ← 1 to 𝑠𝑡𝑎𝑔𝑒𝑠[𝑖] do 

6   index[i][j]= new NN trained on tmp_records[𝑖][𝑗]; 
7   if 𝑖 <  𝑀 then 

8    for 𝑟 ∈ 𝑡𝑚𝑝_𝑟𝑒𝑐𝑜𝑟𝑑𝑠[𝑖][𝑗] do 

9     𝑝 =  𝑓(𝑟. 𝑘𝑒𝑦) / 𝑠𝑡𝑎𝑔𝑒𝑠[𝑖 +  1]; 
10     tmp_records[𝑖 +  1][𝑝].add(𝑟); 

11 for 𝑗 ← 1 to 𝑖𝑛𝑑𝑒𝑥 𝑀 . 𝑠𝑖𝑧𝑒 do 

12  index[𝑀][𝑗].calc_err(tmp_records[𝑀][𝑗]); 
13  if 𝑖𝑛𝑑𝑒𝑥 𝑀  𝑗 . max_𝑎𝑏𝑠_𝑒𝑟𝑟 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 

14   index[𝑀][𝑗] = new B-Tree trained on tmp_records[𝑀][𝑗]; 
 return index; 
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3.3.4.LEARNED BLOOM FILTER (LBF) 
 

Another static learned index, the Learned Bloom Filter (LBF) proposed at [6]. Utilized a Neural 

Network model as an initial-filter (pre-filter [12]), followed by a small Bloom Filter as a secondary-

filter (backup-filter [12]). Unlike traditional indexes, which don't estimate key distribution, LBF takes 

both keys 𝒦 and non-keys 𝒰 datasets into account for machine learning. The neural network is trained 

for binary classification [6]. The output 𝑓(𝑥) represents the "probability" that key 𝑥 belongs to 𝒦. 

while in the model, the FPR is reduced to a non-zero value, resulting in an increase in the FNR also 

to a non-zero value. in contrast to Bloom filters. So, they set a threshold 𝜏 above which the key is 

considered present in 𝒦,they establish 𝑥 ∈ 𝒦|𝑓(𝑥) ≥ 𝜏. To ensure zero false negatives, a set of false 

negatives  𝒦𝜏
− = {𝑥 ∈ 𝒦|𝑓(𝑥) < 𝜏}, is derived for implementing an overflow Bloom filter 

(secondary-filter). The model assumes the key exists if 𝑓(𝑥) ≥ 𝜏, otherwise it's checked with the 

backup filter [6] as shown in Figure 11.  

 

 

 

 

 

 

 

 

 

Figure 5: Learned Bloom filter [6]. 

3.3.5.SANDWICHED LEARNED BLOOM FILTER 
 

Sandwiched Learned Bloom Filter (Sandwiched LBF) also static learned index  proposed by [13] 

as an optimization of the Learned Bloom Filter from [6], by using additional Bloom filter (Initial 

Bloom filter) in front of function 𝑓, so as to exclude almost all queries for keys not in 𝒦. Instead of 

declaring that input 𝑥 is in 𝒦, this initial Bloom filter forwards all matching elements to the learnt 

function 𝑓. Otherwise, it produces an instant negative response (𝑥 ∉  𝒦). Then, as previously 

(Learned Bloom Filter from [6]), they utilize the function 𝑓 to try to eliminate false positives from 

the initial Bloom filter. The backup filter at next step, used to return back keys from 𝒦 that were false 

negatives from 𝑓. If the initial bloom-filter is set up to eliminate more false positives at first, the 

backup Bloom filter could be weak, and allowing almost everything to pass through, so it will be 

reasonably small, so, any extra bits have to go toward the initial Bloom filter, where the budget 

(amount) of the allocated bits for Bloom filters grows [13]. Figure 12 illustrate the Sandwiched 

Learned Bloom Filter.  
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3.3.6. DORAEMON LEARNT INDEX 
 

Proposed for dynamic workloads, the dynamic learned index (C. Tang, Z. Dong, M. Wang, Z. 

Wang, and H. J. a. p. a. Chen, 2019) [14] improves latency by extending training data with access 

frequencies and addressing access pattern and skewed queries. Doraemon caches learned models and 

fine-tunes them when similar input distributions are encountered. It comprises three components: 

Training Set Generator, Counselor, and Finalizer, adapting read access patterns [14]. To integrate 

read access patterns, frequently accessed keys are duplicated in the training set. For keys with higher 

access, their positions are shifted, enhancing accuracy without improving error boundaries. Counselor 

tunes the model, while Finalizer retrains final stage models using the original dataset. Quick due to 

linearity, this procedure ensures corrected position information [14]. 
 

3.3.7. FITTING-TREE  
 

Another dynamic learned indexes called FITing-Tree proposed by (Galakatos et al., 2019) [15], 

innovatively incorporates data awareness. Using piece-wise linear functions, it approximates an index 

with limited error at creation, balancing lookup performance and space consumption. Employing an 

adjustable error threshold, FITing-Tree adapts to datasets and workloads. A cost model helps 

determine error factors for search latency or storage budget [15]. It models index as a monotonically 

growing function mapping keys to storage locations, contrasting clustered B+ trees. FITing-Tree 

segments data into variable-sized parts meeting error thresholds, maintaining a fixed-size array for 

each segment. ShrinkingCone algorithm creates segments while expanding them within error 

constraints, ensuring efficient segment length and insertion. Segments are arranged in a B+-Tree 

structure for efficient retrieval. FITing-Tree stores only start keys and slopes for linear interpolation, 

adapting to sorted data and non-primary key attributes, using indirection layers for the latter. Point 

and range queries involve B+-tree searches followed by key location within segments [15].  

3.3.8.ALEX-INDEX  
 

The dynamic learned index ALEX [16] was designed to tackle challenges posed by short-range 

queries, point lookups, data modification (inserts, updates, deletes), and bulk loading. It merges 

learned index principles with established storage and indexing techniques. Unlike [6], ALEX adjusts 

RMI height and shape dynamically depending on the workload. Storing data at leaf levels as in B+ 

Trees enables individual nodes to extend and split more efficiently, while exponential search corrects 

RMI mispredictions. ALEX employs model-based insertion, enhancing search performance by 

minimizing model mispredictions. Unlike [6], ALEX eliminates the need to adjust model count 

parameters for different datasets or workloads [16]. ALEX's design involves a tree similar to a 

B+Tree, with expanding/shrinking nodes using Gapped Arrays to absorb insertions and allow 

accurate data placement through model-based insertion (Figure 6). Gaps are filled by adjacent keys 

for optimal search efficiency [16]. 
 

ALEX combines dynamic expansion, node splitting, and selective model retraining based on cost 

models adapting to changing workloads, ensuring efficiency despite dynamic data distribution 

changes. These advantages are achieved without manual parameter adjustments [16]. Leaf nodes, or 

"data nodes," store linear regression models, two Gapped Arrays for keys and payloads, similar to 
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B+Tree leaf nodes. Internal nodes predict the position of child pointers using models, aiding traversal 

and partitioning the key space flexibly (Figure 6) [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: ALEX Design [15]. 

3.3.9.PIECEWISE GEOMETRIC MODEL INDEXES (PGM) 
 

The Piecewise Geometric Model index (PGM-index) by (P. Ferragina and G. J. P. o. t. V. E. 

Vinciguerra, 2020) [17] is a fully dynamic and compressed learning index. PGM adapts linear models 

to keys with an error tolerance ε in a recursive structure. PGM adjusts to space or latency constraints 

and excels in predecessor, range, and update queries under high-performance limits [17]. The PGM-

index is parameterized with 𝜀 ≥  1, solving the indexable dictionary issue on a multiset 𝑆 of n keys 

from universe 𝑈. A linear model approximates key locations, and binary search corrects predictions 

(𝜀 =  2) [17]. (Algorithm 2) in Figure 7 demonstrate PGM's recursive construction. PGM's first 

component is the Piecewise Linear Approximation model (PLA-model), using an optimal streaming 

algorithm for minimal segments 𝑂(𝑛). It maps keys to predicted array locations, maintaining ε  

 

distance. Recursive construction transforms the optimum PLA-model into segments, adapting to 

key distribution. This recursive structure forms the PGM-index's levels and nodes. PGM's unique 

construction differs from FITing-Tree and RMI. Each PGM level has a PLA-model, and nodes hold 

segments from that model [17]. (Algorithm 3) in Figure 7 demonstrate PGM's recursive search and 

construction [17]. 

 

 

 

 

Figure 7: (a) Algorithm 2 the build of PGM Index [17], (b) Algorithm 3 Top-Down PGM Recursive search [17]. 
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3.3.10. RADIXSPLINE INDEXES (RS) (READ-ONLY) 
 

The RadixSpline (RS) index, introduced by (A. Kipf et al., 2020) [18], maps keys to their data 

locations. RS is a static learned index that doesn't support single updates. It involves spline points 

approximating data distribution and a radix table for efficient lookup [18]. 
 

 RadixSpline's two components are: (1) spline points approximating data, ensuring predicted 

lookup position within an error bound, and (2) a radix table with r-bit prefixes as indices, narrowing 

spline search space. At lookup, spline points around the key are located using linear interpolation 

within a small data region [18].  RS construction integrates GreedySplineCorridor algorithm for 

spline and radix table creation in one pass [18]. 
 

In RS lookup (illustrated in Figure 8): an r-bit prefix determines radix table pointers for a limited 

spline search range. Binary search locates spline points around the key, linear interpolation generates 

approximate position, and a final binary search within error bounds refines the position [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Illustrates an example of radix spline index lookup [18]. 

ALGORITHM 2   BUILD-PGM-INDEX(𝐴, 𝑛, Ɛ)  [17] 

1 𝑙𝑒𝑣𝑒𝑙𝑠 = an empty dynamic array 

2 𝑖 = 0; 𝑘𝑒𝑦𝑠 = 𝐴 

3 repeat 

4  𝑀 = BUILD-PLA-MODEL(𝑘𝑒𝑦𝑠, ɛ) 

5  𝑙𝑒𝑣𝑒𝑙𝑠[𝑖] = 𝑀;   𝑖 =  𝑖 +  1 

6  𝑚 = SIZE(𝑀) 

7  𝑘𝑒𝑦𝑠 = [𝑀[0]. 𝑘𝑒𝑦, . . . , 𝑀[𝑚 −  1]. 𝑘𝑒𝑦] 

8 until 𝑚 =  1 

9 return 𝑙𝑒𝑣𝑒𝑙𝑠 in reverse order 

 
(a) 

Algorithm 3  QUERY(𝐴, 𝑛, ɛ, 𝑙𝑒𝑣𝑒𝑙𝑠, 𝑘) [17] 

1 𝑝𝑜𝑠 = 𝑓𝑟(𝑘),  where 𝑟 =  𝑙𝑒𝑣𝑒𝑙𝑠[0][0] 

2 for 𝑖 = 1 to Size(𝑙𝑒𝑣𝑒𝑙𝑠)  −  1 

3  𝑙𝑜 = 𝑚𝑎𝑥{𝑝𝑜𝑠 −  ɛ, 0} 

4  ℎ𝑖 = 𝑚𝑖𝑛{𝑝𝑜𝑠 +  ɛ, 𝑆𝑖𝑧𝑒(𝑙𝑒𝑣𝑒𝑙𝑠[𝑖]) –  1} 

5  𝑠 = the rightmost segment 𝑠′ in 

   𝑙𝑒𝑣𝑒𝑙𝑠[𝑖][𝑙𝑜, ℎ𝑖] such that 𝑠′. 𝑘𝑒𝑦 ≤  𝑘 

6  𝑡 = the segment at the right of 𝑠 

7  𝑝𝑜𝑠 = ⌊min{𝑓𝑠(𝑘), 𝑓𝑡(𝑡. 𝑘𝑒𝑦)}⌋ 

8 𝑙𝑜 = max{𝑝𝑜𝑠 −  ɛ, 0} 

9 ℎ𝑖 = min{𝑝𝑜𝑠 +  ɛ, 𝑛 –  1} 

10 return search for 𝑘 in 𝐴[𝑙𝑜, ℎ𝑖] 

 (b) 
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4. DISCUSSION AND RESULTS 
 

This section is split into two parts, each with a distinct purpose. In the first part, we 

comprehensively explain and analyze the reviewed techniques, covering time complexities, 

structures, strengths, and limitations. This provides an understanding of each technique's applicability 

and use cases. The second part summarizes the theoretical analyses using two tables, making the 

information concise and accessible. Additionally, we present a taxonomy categorizing Learned 

Indexes into static and dynamic categories, further enhancing clarity. This structured approach 

ensures readers grasp the techniques' nuances, catering to those seeking both in-depth insights and 

quick reference. 
 

4.1.CRITICAL DISCUSSION AND EXPLANATION 
 

The section has two parts: Part one explains the techniques, including time complexities, 

structures, strengths, and limitations, giving insights into their use cases. Part two summarizes the 

analyses in concise tables, adds a taxonomy categorizing techniques into static and dynamic Learned 

Indexes, enhancing clarity. This structured approach aids readers in understanding nuances and caters 

to different reading preferences. 
 

When analyzing theoretical aspects of indexing techniques, including complexities and Big O 

notation calculation for traditional database indexing and Learned Indexes, exact analysis can be 

challenging due to lack of explicit details, comparison operations, and implementation specifics in 

the research. Factors contributing to this challenge are explained later in this section. Instead, an 

estimated Big O notation can be used based on fundamental characteristics of the technique [26]. This 

estimation helps approximate performance and understand scalability. Big O notation is a 

mathematical way to describe an algorithm's upper bound complexity. It aids in comparing 

techniques, understanding scalability, and making informed decisions for specific applications [27, 

28]. This approximation, though valuable, is not exact, focusing on idealized computational models 

and ignoring hardware and software complexities. 
 

Actual performance is influenced by hardware constraints (CPU architectures, memory 

hierarchies, disk access times) and implementation details, introducing deviations from theoretical 

analysis [6, 16, 26-28]. Key factors include: 
 

1. Algorithmic Variations: Real-world implementations may differ due to optimizations or 

heuristics, affecting operation counts  [6, 16, 26-28]. 

2. Dataset Characteristics: Data type, size, distribution, and skewness impact complexity and 

indexing strategies [5, 6, 16, 21]. 

3. Implementation Details: Specific choices in optimization, data structures, and implementation 

affect time and space complexities [6, 16, 26-28]. 

4. Machine Learning Technique: Choice of ML algorithm impacts computational demands, training 

complexities, and prediction accuracy [6, 10, 23]. 

5. Number of Models: Using multiple models or auto-generation based on data/query workload adds 

computational complexity [6, 10]. 
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6. Retraining: Frequent model retraining impacts performance, adding time/resource demands [6, 

10, 14-16]. 

7. Error Bound Factor: Error bounds affect prediction accuracy and efficiency trade-off, influencing 

complexity and performance guarantees [6, 10, 15-18]. 

8. Query Type and Workload: Query type and workload characteristics introduce variations in 

complexity based on indexing strategies [6, 10, 15-18]. 
 

Performance can vary based on factors mentioned earlier. The following offers a detailed overview 

of the reviewed techniques 
 

On a hand, traditional indexing techniques like B+tree have limitations. B+tree has 𝑂(𝐵 log𝐵 𝑛) 

lookup and I/O complexity, also 𝑂(𝐵 log𝐵 𝑛) complexity for dataset modification (insert, delete, 

update) in worst and best cases. It consumes 𝑂(𝑛) space and has building time of 𝑂(𝑛 log2
𝐵

𝑛) in 

worst-case considering maximum rebalancing of the tree, and building time of 𝑂(𝑛) in best-case 

scenarios. B+-Tree is adaptive and versatile, but lacks adaptive learning on CDF, struggles with 

skewed distributions, and can have overhead for large datasets. It suits relational databases, file 

systems, key-value storage, transaction processing, and search engines. 
 

While on the other hand, Learned Indexes enhance query efficiency using machine learning and 

CDF-based statistical models to replace traditional structures. Despite challenges in theoretical 

analysis and 𝐵𝑖𝑔 𝑂 notation, state-of-the-art learned index techniques are examined as follows: 
 

The Recursive Model Index (RMI), a Learned Index with a Directed Acyclic Graph (DAG) 

structure, aims to reduce space complexity. In worst-case scenarios, high irregularity of key 

distribution and complex models hinder accurate predictions. Conversely, best-case scenarios with 

regular CDF patterns and lightweight models enable efficient key partitioning. Let n be dataset size, 

s stages, and m model space complexity. RMI space complexity for both scenarios approximates 

𝑂(𝑠 ∗ 𝑚). In best-case scenarios, it can minimize if models are lightweight, metadata requirements 

are minimal, CDF enables efficient partitioning, and models can be shared. As a result, RMI can 

approximate 𝑂(1) without guarantees, indicating constant space usage. Lookup time complexity 

approximates 𝑂(𝑠) for both scenarios. In worst cases, traversing all stages may be needed due to 

irregular CDF or skewed distribution, leading to 𝑂(𝑠) time complexity. In best cases, with regular 

CDF or accurate predictions within a stage, lookup time may be 𝑂(1) without guarantees, indicating 

constant time complexity. RMI's I/O time complexity mirrors lookup time for worst cases, leading to 

𝑂(𝑠) complexity. However, in best cases, optimal disk access patterns result in efficient data block 

access and 𝑂(1) complexity. RMI has a build time complexity of 𝑂(𝑠 ∗ 𝑛) in both cases due to 

traversing the dataset at each stage. It lacks data modification capabilities, supports limited query 

types, has training overhead, and balances accuracy and performance trade-offs. Overall, RMI is 

suitable for large datasets, in-memory databases, data warehousing, analytics, read-heavy workloads, 

and decision support systems. 
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Hybrid Indexes, a subset of Learned Indexes, combine RMI and traditional B-tree structures. Last-

stage models may be replaced by B-trees if learning is challenging. It inherits characteristics of both 

methods, leaning towards one depending on the scenario. Similar to RMI, Hybrid Indexes aim to 

minimize space complexity, approximating 𝑂(𝑠𝑚) at best-case and 𝑂(𝑛) at worst-case scenarios. In 

best cases, lookup complexity is around 𝑂(𝑠), and I/O complexity approximates 𝑂(1). In worst cases, 

lookup and I/O complexities are approximately 𝑂(𝑠 + 𝑙𝑜𝑔 𝑛) when last-stage models are replaced by 

B-trees. Like RMI, Hybrid Indexes have a significant build time of 𝑂(𝑠 ∗ 𝑛) in both scenarios. Hybrid 

Indexes, like RMI, depend on key distribution, lack data modification, support limited queries, and 

have training overhead. Balancing accuracy, size, and performance is crucial. These characteristics 

make Hybrid Indexes suitable for large databases, data analytics, read-heavy workloads, and latency-

sensitive applications. 
 

The Hash-Model Index is a Learned Index used for point queries, replacing traditional hash 

functions with a learned model from key data's CDF. Its structure mostly retains traditional hash index 

components. Key factors affecting its time and space complexities are the hash model, dataset and 

hash table sizes, and collision handling. For dataset size represented by n and hash table size by d 

(buckets), the best-case occurs with ideal collisions (even distribution or no collision). Lookup and 

I/O complexities approximate 𝑂(1) in the best-case, while build time complexity is 𝑂(𝑛) regardless 

of the scenario. Worst-case lookup and I/O complexities could approximate 𝑂(𝑛). The Hash-Model 

Index lacks structural adaptability, supports only point queries, has longer build times than traditional 

hash indexes due to model learning, and larger size due to added storage for the hash model. Suitable 

use cases include scenarios requiring high-speed querying. 
 

The Learned Bloom Filter (LBF) within the Learned Index framework combines a learned model 

and a traditional Bloom Filter. In lookup, the worst-case scenario occurs when the queried key isn't 

in the filter, resulting in a false negative. This directs the lookup to the back filter, incurring extra 

computation. In the best case, the queried key is present in the filter, yielding a correct positive 

prediction by the model. Despite model and back filter complexities, LBF's lookup, I/O, and space 

complexities are approximately 𝑂(1). However, LBF's complexities are greater than traditional 

Bloom Filters due to model intricacies and training overhead. Building LBF has a complexity of 

𝑂(𝑛), regardless of the scenario. LBF doesn't support dataset modification, handles only existence 

queries, and while it reduces false positive rates, some still occur. It's suitable for large-scale datasets 

with complex patterns and applications with low tolerance for false positives. 
 

The Sandwiched Learned Bloom Filter enhances the Learned Bloom Filter by adding a Bloom 

filter before the learned model. This reduces negative queries sent to the model, improving query 

performance. In the worst-case scenario, if the initial Bloom filter has high false positives or the 

model struggles, the front filter's benefits lessen. In the best case, with a good initial Bloom filter and 

accurate model predictions, the approach shines. The time and space complexities remain similar to 

Learned Bloom Filter. The front filter can enhance query performance by avoiding model overhead 

for negatives in the best case. However, it introduces additional space and potential computational 

complexity during construction and lookup in the worst case. Like LBF, the Sandwiched Learned 
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Bloom Filter involves a trade-off between efficiency and accuracy. It's suited for LBF use cases and 

scenarios with high query throughput. 
 

Doraemon, a Learned Index solution for dynamic workloads, introduces complexity with 

components like Training Set Generator, Counselor, and Finalizer, augmenting data based on access 

patterns. In the worst case, if data distribution changes drastically or becomes skewed, predictions 

falter, impacting lookup times. A major distribution shift may demand extensive model retraining, 

degrading performance and efficiency. Conversely, Doraemon excels in stable or predictable 

distribution scenarios, leveraging cached models for accurate predictions and faster lookups. Build 

time complexity approximates 𝑂(𝑛) for both cases, considering extra complexity in the worst case. 

Lookup and I/O time complexity depend on model complexity, approximating 𝑂(1) in the best case. 

Space complexity is model-dependent regardless of the structure. Dataset modifications' impact 

depends on structural implementation. Doraemon's sensitivity to data distribution and reliance on a 

representative training dataset can lead to computational overhead and complexity. Adapting the 

structure for dynamic modifications can be challenging. Doraemon requires storage for trained 

models and cached data. It suits database indexing, time-series data, log analytics, IoT data, and real-

time analytics. 
 

FITing-Tree, a mixed Learned Index, embeds Learned Models (Linear Segments) within a B+-Tree 

structure. With 𝑛 as dataset size, 𝑚 models, 𝐵 B+-Tree order, 𝑏𝑢𝑓𝑓 segment buffer size, and 𝜀 error 

threshold, build time complexity at worst-case (max segments) is approximates 𝑂(𝑛 + 𝑙𝑜𝑔𝐵𝑚), and 

at best-case (min segments) is 𝑂(𝑛). Lookup time complexity (worst-case) is 𝑂(𝑙𝑜𝑔𝐵 𝑚 + 𝑙𝑜𝑔2 𝜀 +

 𝑙𝑜𝑔2 𝑏𝑢𝑓𝑓 ), and (best-case) is  𝑂(𝑙𝑜𝑔𝐵 𝑚). I/O time complexity is 𝑂(𝑙𝑜𝑔𝐵 𝑚) regardless of the 

scenario. Space complexity worst-case is 𝑂(𝑙𝑜𝑔𝜀 𝑛) and best-case is 𝑂(𝑙𝑜𝑔𝐵 𝑚), Modification 

(insert, delete, update) time complexity is Modification (insert, delete, update) time complexity is 

𝑂(𝑙𝑜𝑔𝐵 𝑚 +  𝑏𝑢𝑓𝑓) at worst-case, and 𝑂(𝑙𝑜𝑔𝐵 𝑚) at best-case. FITing-Tree supports common 

query types and dataset modifications, adapting to distribution changes. Sensitive to data distribution, 

it can have a large model count, affecting B+-Tree height. The error threshold balances size and 

performance. FITing-Tree suits large-scale datasets, complex patterns, data exploration, analytics, 

read-heavy workloads, latency-sensitive apps, clustered and non-clustered indexes, and applications 

with dataset modification. 
 

ALEX, a mixed Learned Index, balances size and performance dynamically using cost models, 

eliminating manual tuning. Overhead before RMI initialization and index construction for node 

expansion and splitting. Given n (dataset size), B (max node size), m (min models/partitions), ALEX 

space complexity is 𝑂(𝑛 +  𝑚). Build time complexity worst-case approximates (𝑛 𝑙𝑜𝑔𝐵 𝑚 +

 𝑙𝑜𝑔 𝐵 +  𝑚) , best-case 𝑂(𝑛 𝑙𝑜𝑔𝐵 𝑚). Lookup time complexity 𝑂(𝑙𝑜𝑔𝐵 𝑚  +  𝑙𝑜𝑔 𝐵), , best-case 

𝑂(𝑙𝑜𝑔𝐵 𝑚). I/O time complexity worst-case 𝑂(𝑙𝑜𝑔𝐵 𝑚), best-case 𝑂(1). All modification (insert, 

delete, update) time complexities approximate 𝑂(𝑙𝑜𝑔𝐵 𝑚 +  𝑙𝑜𝑔 𝐵 +  𝑚) worst-case, 𝑂(𝑙𝑜𝑔𝐵 𝑚  +

 𝑙𝑜𝑔 𝐵) best-case. ALEX supports point and range queries. Each level partition requires model 

training, introducing initial overhead. Sensitive to data distribution, skewed data leads to more 

splits/merges, impacting performance. Adaptive to changing data distributions, yet rapid changes may 

affect model-based pointers and performance. ALEX reduces memory/storage but still needs 
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additional storage. While efficient with queries and changing distributions, it lacks explicit 

optimization based on query patterns. 
 

PGM-index, a Learned Index for point and range queries, balances index size and performance 

through dynamic recursive structure. With 𝑛 (dataset size), 𝜀 (error threshold), 𝑐 ≥  2𝜀, 𝐵𝑧 (block 

size), 𝑚_opt (optimal models/segments), PGM-Index aims to minimize models while specifying 𝜀. 

Regardless of model complexities, PGM-Index's build time complexity approximates 𝑂(𝑛). Lookup 

time worst-case (𝑙𝑜𝑔𝐵𝑧
 𝑚𝑜𝑝𝑡  +  𝑙𝑜𝑔2 𝜀) , best-case 𝑂(𝑙𝑜𝑔𝐵𝑧

 𝑚𝑜𝑝𝑡). I/O time worst-case 

𝑂(𝑙𝑜𝑔𝑐 𝑚𝑜𝑝𝑡), best-case 𝑂(1). Insertion, deletion time complexities 𝑂(𝑙𝑜𝑔 𝑛) 𝑎𝑚𝑜𝑟𝑡𝑖𝑧𝑒𝑑 worst-

case, 𝑂(1) best-case. PGM-Index's dynamic array introduces overhead, inefficient memory use 

during resizing. Query distribution impacts performance; real-time learning may not keep up with 

data changes. PGM-Index versatile and powerful, suitable for range queries, time series data, low-

latency applications. Fits in-memory databases, space-efficient systems. Handles high-dimensional 

data efficiently for multi-dimensional indexing. 
 

RadixSpline is a static learned index designed for efficient index building, focusing on read-only 

scenarios. It can be built in a single pass over sorted data, with complexities depending on parameters 

like n (dataset size), ε (error bound), r (prefix radix bit), and k (spline points). While suitable for read-

heavy workloads, it lacks support for dynamic dataset updates. Its build time complexity is O(n) 

regardless to scenario. Space complexity approximates 𝑂(𝑘 + 2𝑟) when 𝑘 ≤ 𝑛 for both scenario 

with significant different based on 𝜀. Lookup time worst-case is (𝑙𝑜𝑔2 𝑘) ,  best-case 𝑂(1). I/O time 

is similar, approximating 𝑂(𝑙𝑜𝑔2 𝑘) worst-case, and, 𝑂(1) best-case.  RadixSpline doesn't adapt to 

changing data distributions, focusing on individual key lookups. Its construction process is complex, 

involving various checks and adjustments. It's well-suited for batch processing of large datasets, 

archival data with infrequent changes, and data warehousing scenarios. Also useful for historical data 

analysis. 
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4.2. THEORETICAL RESULTS 
 

This section includes two components: a summary table compiling theoretical analyses and a 

taxonomy classifying reviewed Learned Indexes. 
 

4.2.1. SUMMARY TABLES 
 

We summarize the theoretical analyses from the initial result component. in two tables for clarity. 

These tables condense key findings, making them easily understandable and accessible. They offer a 

quick overview of each reviewed technique, aiding comparison. The summary tables are presented in 

(Table 1 and Table 2). 
 

Key features of the reviewed Learned Indexes are divided into two summary tables. The first table 

covers structure, constraints, and use cases. The second table includes complexities, dataset 

modification (insert and delete), and enabled properties. Symbols used for representing complexities 

are:{𝑛 (number of keys), 𝐵 (tree order/fanout for B+-Tree, Fitting-Tree, and ALEX), 𝐵𝑧 (page-size 

for PGM), 𝑠 (stages/level for RMI and Hybrid Index), 𝜀 (error bound), 𝑚 (number of generated 

model),𝑚𝑔𝑟𝑒𝑒𝑑𝑦 (number of the linear models generated by Fitting-Tree's greedy algorithms), 𝑚𝑜𝑝𝑡 

(optimal number of linear models generated by PGM 's optimum algorithm,  𝑏𝑢𝑓𝑓 (buffer location 

in Fitting-Tree), 𝑐 (variable fan-out for PGM data structure where 𝑐 ≥  𝜀, and 𝑘 (number of spline 

knot generated by RadixeSpline’s spline algorithm of }. 
 

It's important to note that these complexities are simplified assumptions, approximating the actual 

model complexity and training process. In reality, the build time complexity would also be affected 

by the previously mentioned factors such as the quality of the dataset, the complexity of the learned 

model architecture, and the available computational resources. 
 

4.2.2. TAXONOMY 
 

In the next section, a taxonomy of the reviewed Learned Index techniques is presented. It divides 

these methods into two groups: static and dynamic Learned Indexes. The static category includes 

Existent Indicators, Point Indexes, and Point/Range Indexes. Within this, Learned Bloom Filter and 

Sandwiched Learned Bloom Filter fall under Existent Indicators, Hash-Model under Point Index, and 

RMI, Hybrid, and RadixSpline under Point/Range Index. In the dynamic category, all techniques fall 

under Point/Range Indexes: Doraemon, Fitting-tree, Alex, and PGM. This taxonomy offers a 

structured way to understand these techniques, aiding in their organization and providing a 

comprehensive view of Learned Indexes. See Figure 9 for the taxonomy illustration. 
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5. CONCLUSION AND FUTURE WORK 
 

In this comprehensive survey, we've explored the emerging realm of learned indexes, analyzing 

their complexities, capabilities, and limitations. Through a well-defined taxonomy, we've illuminated 

the diverse landscape of learned indexes, revealing their potential and challenges. The survey began 

by addressing fundamental questions about learned indexes, uncovering their advantages and 

drawbacks. Learned indexes offer improved performance, reduced memory overhead, and potential 

to revolutionize data indexing and querying. Efficient point and range queries, adaptability to data 

shifts, and reduced I/O operations showcase their applicability to modern data challenges. Yet, as the 

survey progressed, it became evident that existing techniques are not fully equipped to meet various 

application and dataset needs. While promising, learned indexes face challenges such as variable 

query patterns, sensitivity to data distribution, training overhead, memory usage, and the accuracy-

size-performance trade-off. Further innovation and adaptive techniques are necessary to bridge 

theoretical analyses with practical implementation. This survey points to the future of learned indexes. 

New techniques are needed, blending traditional index structures with the intelligence of learned 

models. Dynamic data requires indexes that evolve with it, responding to distribution and query 

changes effectively. In conclusion, this survey offers an expansive view of learned indexes, 

highlighting their potential and limitations while emphasizing the need for focused research and 

innovation. As data evolves, the learned index paradigm must discover techniques that harmoniously 

blend tradition and innovation. Through exploration, we aim to propel learned indexes toward a future 

that empowers data-driven applications with efficiency, adaptability, and lasting relevance.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Taxonomy of the reviewed state of the art Learned Index 
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