The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

/ Learned-Indexes for Improving Query Performance \
A Comprehensive Survey with Taxonomy

Chiya Qadir Hama Faraj*, Nzar A. Ali?3

!Department of database Technology, Technical College of Infromatic, Sulaimani
Polytechnic University, Sulaimani, Iraq
2Department of Statistics and Informatics, College of Administration and Economic,
University of Sulaimani, Sulaimani, Iraq
3Department of Computer Science, Cihan University -Sulaimaniya, Sulaimaniya, Iraq

\ Email: chya.q.h@spu.edu.ig?, nzar.ali@univsul.edu.ig?, nzar.ali@sulicihan.edu.krd® /

Abstract:

Database performance optimization involves intertwining developmental efforts with challenges.
Core to this field are index structures, notably the B+-Tree technique, which enhances database
performance by mapping keys to their locations regardless of data distribution. Although the B+-Tree
improves query performance, it has inherent limitations affecting overall efficiency. The rise in data
volume intensifies indexing complexities. Machine Learning (ML) emerges as a potent approach to
rejuvenate legacy Database Management System (DBMS) components. A notable innovation is the
"Learning Indexes" paradigm, viewing indexes as predictive models anticipating key locations in
datasets, akin to Cumulative Distribution Functions (CDF). This study serves as a survey, exploring
technologies underpinning learned-index paradigms and comparing them with traditional database
indexing techniques. Through meticulous analysis, it unravels intricacies of both traditional and
learned indexing paradigms, equipping aspiring analysts with a panoramic understanding. This
underscores the imperative of charting a path for future advancements within this transformative
domain.

Keywords: Index Terms, Learned-Indexes, Database Indexing, Query Performance, Complexity
Analysis, Taxonomy.

sudlall

Gl IS et Ly sa (8 s gl llaasty e (S8 a5 el Ylaa Lgiia g 5 il 330 B 30US g o1l 2y

Go il Gy Lead gl ULl el cpant IS (g S IS il 3208 ol (puat e 2, 80 (B4+-Tree) Jie
bl Bac B 3 US e g dlialia 1358 4a) 55 Ll W) aDainl) elol Gauas e (B+-Tree) dest Ly i) a3 58
(ibaatll o3 dgal sal sy A ygdll 8 ol aelad) 535 Lea ¢ il aan 335 ae gy ST 2 5l o3 cracad
2l (DBMS) dapill i) ael 5)y 4kl bapiiiil (Machine Learning) (oY) alaill o 22800 ol s
ol JSba Ay 8 (o)58 Sl g aliie oy Jlae 585 ¢MAalaiall G ledll") sela sa Jlaall 1 b 3ac)) ol L)
(CDF) (<8Il g 5 sl Cailda 5 alasiusly peiliall al e o183y il Lgiay "or Sl b Gl G auaall) slaiall 138 (5 09
e yamal Al Lal (Dt 5eliS (ppnt) (525 38 Lea e il ALE LSS il | somi sile)) 138 55
Aulliag A, 038 131 53 yama (o Jlaal) 138 8 ALLEN AR (b cac) 5 Aalaiall o jladl) o cpom 8 5l il
JSbes Lei_lia s cialaiall o jledll ol iaal GLASEL 5 «Gaae 5 Jab Jalat e ALl iloaind) 3 5 AL Gaal e

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

186

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30
mailto:chya.q.h@spu.edu.iq
mailto:nzar.ali@univsul.edu.iq

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

35t Las chanlil) A sl Aalaiall o el it el e (RIS el adl JNA (pay Andtl) Akl s el
‘51:\‘5;:\“ Al \AAGA&.\ALAAS\ emﬂJLMHJEJ})AASj:I ‘AA} GA\J}JL\eg.S.\u.\AJAH‘ ugﬂ;.d\
i) il it DV ool (i) 5306 ds yg csobiinal o jledl ¢ peil) ilallaas daliial) cilal)

48 g

£

o AR SR 5 il 1S4 B 4 6 e sy 31U Sae 535 4 cio sl (S50 Ol (i sa 5 S
s St (Sdp i 4 4S (B+-Tree) sSe (oSdaid) o Sian ad SISy damSaismnaial (S5 p 4l 4l
1SS Al SALIS (Uil g gadands il 8 ooty (LilSaii s o S sla g LIS JLAIKAGAAS 4 0 AidSen) il
Al (5 A8 IS 4S b gAliied (g s (55005 i (555 A g9 «lSed JAEL (UnsS) hss (i s s B+-Tree 4S
iosb) 38 Alied 48 (OISUI (go L8 5l y JaSAD (G ASea gea k) Adlis s i pdd A4S Cudlily () IS
(Maching el (s 52 «\So s)alan_pius agisi o 3Lty cadly JAIS a3 S o Jla 50 23S (a4l (lSag 3l
2o) g pd (idanie o5 (Sl (DBMS) Gurtdlila (3 00 53 pha (oeionas (50 54 K 5500) 5o (iiaes 1S4y Learning)
ado 3ials () 3 (S A8 5 0.5 520l (g0 iy 335 (S350 4S ¢(Learned Index) " s s (oaSiais" laka s
lish i o) (S i 4y () g 4S "Gl fa GISALSGNS" AS Ayl y A g B pah ailSAsai (saileSh
)i (gaSay oy ISanSii o l8iai K pal (CDF) 5SS 5 gudiagla ASaGas Jliia IS4 45 (450 (lSali
ASiai 4S 1SS Al S A8 Ll alia Sl il 4p o AiSen A S S (IS b3 (SIASE 4
Ap AL 3 pdd o g R G ol A o) 5 s 13 a8 s) Y pd (S SR b i A (pdAania 5 (Se 5 50 58
S Al 5l S jluidy ASSad (g Al J8 s Sliails o 8 5) i Sape i S 5 0 g sala
sl e (S 5310 o503)5 (5 S0l (48 Al GRS S 533 o gl 4dleSily JABA (Jlia S0 55 s 5 (\Ss 5
oS 5 JlSabjd o S (s (el 3l (SEEAEE A4S (lSen | KA (S pi AnSaih 5 (1S 5 50 B AnSais
o 2S00 1oy IS) 8 o)) 53 ol g silaly (5 a8y 5 Sy (LS YD e sy] s (ieds 1Ko) pAia g

2 3 3 ¢S 310 (g S jlams g (51305 co gl 538y (30 SN SIS (9 30)8 SIS (051)) 1 g ALIS

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

187

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

INTRODUCTION

Modern databases are ubiquitous, impacting every facet of our lives. Data is considered a valuable
organizational asset, with Database Management Systems (DBMS) storing, retrieving, and
processing data to inform decisions efficiently and conveniently [1-3]. A key challenge in databases
is performance, primarily tied to query processing. Enhancing query execution directly betters
database performance. Indexes, supplementary structures linked to data files, enable efficient access
methods. [1-5]. Indexes remain a potent technique significantly boosting query performance.
Indexing links keys to related data record locations, associating each key with a reference to a full
record in the database file. [1, 2, 5, 6]. The B+-tree and Hash-table are common index files, serving
as models that map keys to records regardless of key distribution. Although indexes reduce query
response time, they have drawbacks impacting database performance. Additional space required for
index files poses a size challenge, and creating multiple indexes for frequently used fields can burden
the query optimizer. [7, 8]. Amidst escalating data volumes and diversity, indexing challenges grow.
Recent research delves into machine learning to enhance legacy DBMS components, such as
Learning Indexes, a novel approach for query performance improvement. Learning Indexes deploy
machine learning models to predict record positions for specific keys, leveraging data distribution.
This approach considers indexes as models mapping keys to records, with potential for model
upgrades [6, 9-11]. Being a new trend, there's limited high-level guidance available. This survey
explores the popular state-of-the-art in Learned Indexes, encompassing principles, structure,
procedures, database indexing, and traditional methods. This work aids researchers entering this field
and offers a taxonomy for reviewed Learned Index Techniques. The paper's structure is as follows:
Section two presents the Problem Description, followed by the literature review in section three.
Section four offers the background review. Section five is divided into two parts: the first part includes
critical discussion and illustrative explanation, while the second part presents theoretical results
through summary tables and a taxonomy. The paper concludes with section six, which contains the
conclusion and future work.

1. PROBLEM DESCRIPTION (SURVEY QUESTION

In nascent trends, initial resources like surveys or taxonomies might be lacking. Similarly, the emerging
area of Learned Indexes faces a scarcity of comprehensive guidance. This study aims to illuminate the core
concepts of Learned Indexes, presenting state-of-the-art advancements with crucial details. Additionally, a
foundational taxonomy for these techniques is established..

2. REVIEWED LITERATURES

Learning-based structures, such as the learnt B-tree, are being investigated by the Database and Machine
Learning communities, with the goal of upgrading conventional indexes with learning-based models to achieve
higher time and space efficiency than previously known methods.

According to (Kraska et al., 2018)[6], indexes function as models, with the B*-tree index resembling the
(CDF) cumulative distribution function. They introduce the Recursive Model Index (RMI), which employs a
learning model to predict page IDs in an in-memory framework. They further apply this to the Learned Hash-
Map (Hash-Model Index), using hash functions to uniformly distribute keys in hash buckets, reducing conflicts
[6]. Additional to the previous idea, they also proposed a Learned Bloom Filter that consists of a Neural

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

188

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Network as initial-filter (pre-filter [12]) comes before an ultimately small Bloom Filter as a secondary-filter
(backup-filter [12]). that also learned by observing the Query Distribution History for differentiation among
the key and non-key [6].

Following (Michael Mitzenmacher, 2018)[12] 's analytical explanation of the proposed learned Bloom
Filter in [6] he enhanced it further. In (Mitzenmacher, 2019)[13] he introduced the Optimized Learning Bloom
Filter (Sandwiched Learned Bloom Filter) This approach employs an extra bloom filter before the learned
prefilter, passing only positive queries to the learned prefilter, followed by the backup bloom filte [13].

A learnt index (Doraemon) was presented by (C. Tang, Z. Dong, M. Wang, Z. Wang, and H. J. a. p. a. Chen,
2019)[14] for dynamic workloads as a solution to the shifting data distribution issue that leads to model
retraining. By utilizing the prior model structure for access patterns and data distribution that are comparable
[14].

The learning index Fitting-tree, detailed in (Galakatos et al., 2019)[15], offers robust error boundaries,
predictable efficiency, and two data insertion methods. Fitting-tree employs in-place insertion with additional
space (g) to avoid page errors. For large segments, insertion cost might be notable. The delta insertion technique
maintains a fixed-size buffer where ordered keys are inserted. Upon buffer limit, segments split and merge
[15].

The Alex-index proposed in (J. Ding et al., 2020)[16], similarly reserves space for inserted keys like Fitting-
tree. However, in Alex-index, reserved space is distributed, directly placing keys in the predicted location. If
occupied, gaps are added (gapped array) or the array grows (packed memory array). This design flexibility
aids in balancing space and efficiency trade-offs [16].

Addressing the fully-dynamic indexable dictionary problem, (P. Ferragina and G. J. P. o. t. V. E.
Vinciguerra, 2020)[17] introduced the PGM-index. This learning structure employs a bottom-up approach to
recursively generate a multi-level index model. Three PGM-index versions are presented: one with ad-hoc
compression for space efficiency, one adaptable to query distribution, and one optimizing itself within
specified space or query time constraints [17].

(A. Kipf et al., 2020)[18] proposed the RadixSpline (RS); a learning index that could be constructed in a
single-pass through a sorted data, whereas with a fixed amount of effort per additional element, unlike the prior
techniques. In terms of both size and search efficiency, they have competed with the latest learning index
models such as RMI from [6] Notably, RS has primarily two parameters, as highlighted in their evaluation
[18].

DOI: http://dx.doi.org/10.25098/8.1.30

189

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

3. BACKGROUND OVERVIEW

Databases hold data as records in files, often on secondary storage like hard disks for long-term storage.
Transient data, parts of persistent data, are frequently accessed and processed in primary storage (e.g., main
memory) during program runtime, with a short lifespan. [3]. Indexes are secondary access structures that aid
in quick retrieval of field-based records from larger file records. Similar to a textbook's index aiding content
search, a database's index fulfills a comparable role. Notably smaller than the book, the index reduces effort
required [1]. Indexes typically store key values and a few attributes, using significantly less memory than the
entire file. This enables creation of an index that loads into main memory, boosting processing efficiency for
large disk-stored files [2].

3.1. MOST POPULAR TRADITIONAL INDEX

There are deferent kinds of index such as range index structure (e.g., B*-Tree Index), point-index (e.g.,
Hash-map), and record existent indicators (e.g., BitMap-Index, Bloom filter) [6]. Below is the most two
popular and common traditional index structures (B*-Tree Index and Hash-map):

3.1.1. B+-TREE INDEX

The widely used B+-Tree index enhances query processing [16, 19]. It's a balanced-height lookup tree,
directing record lookups based on field values [2, 3]. B*-Tree maintains a balanced shape, with internal nodes
having [n / 2] to n children, where n signifies the tree order. While the root holds 2 to n children [1, 2, 16],
Leaf nodes store real data pointers and form a doubly linked list for random and sequential access [16, 19].
The B*-Tree s a generic structure without assumptions about key distribution [19, 20].

3.1.2. BITMAP INDEX

Bitmap indexing is suitable for relations with a considerable number of records, especially for columns with
limited unique values. In a bitmap index, each record is assigned an ID from 0 to n, which maps to a physical
address including block numbers and offsets [3]. A bitmap index employs bit arrays, with an attribute-based
index using a bitmap for each attribute value. These bitmaps have the same number of bits as the relation's
record count. Initially set to 0, if record i of attribute A has value vj, the bitmap for vj sets the corresponding
bit to 1. Bitmap indexes excel in selections, particularly involving multiple key selections [1]. To verify a
selection, intersect bitmaps of key values, creating a new bitmap with a bit set to 1 if the corresponding bits in
input bitmaps are all 1s, else it's 0. [1, 3].

3.1.3. BLOOM FILTER

A Bloom filter is a compact structure to check set membership. Using an m-bit array and k hashing
functions, keys are mapped to array positions. Initially, all bits are 0. Adding a member sets bits at hash
function addresses. To verify membership, a key's hash functions return positions. If any bit is 0, the key is
not present. While Bloom filters prevent false negatives, they can lead to false positives. A strong hash function
for point indexes has fewer collisions, while for a Bloom filter, it has more key and non-key collisions, and
fewer key-non-key collisions [1, 6].

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

190

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

3.1.4. HASH INDEX (HASH MAP)

A Hash index consists of an array of pointers, or hash buckets, storing addresses pointing to linked lists of
keys [21]. Hash indexes are crucial for point lookups in DBMS. They map keys to array positions using hash
functions. Efficient implementation aims to avoid many keys mapping to the same location, termed collisions

[6].
3.2. LEARNING BASE INDEX

Traditional indexes lack data distribution use. Learning-based indexes employ machine learning, diverging
from B*-Tree and Hash indexes. They aim for accurate data representation, enhancing efficient indexing [10].
Indexes are functions mapping keys to values for range, Hash, or Bitmap indexing [14].

3.2.1. MAIN CONCEPTS
3.2.1.1. UTILIZING MACHINE LEARNING TECHNIQUES

Machine Learning (ML) enables computers to learn without programming, encompassing Al, neuroscience,
and more. It simplifies problem-solving by creating models from data [22, 23]. ML methods, including neural
networks, construct the Learning Based Index by approximating CDF [6]. Figure 1 Demonstrates the Learned
indexes compared to B-Tree index.

(a) B-Tree Index (b) Learned Index
Key Key
Model
- (e.g., NN)
ree
pos pos

S

LT U]]I[I]]]I]]]]]]Mﬂﬂ

pos-0 pos + pagezise pos - min_srr pos + max_sr

Figure 1: (a) B-Trees indexes, (b) Learned indexes [6].
Approximating the (CDF) Cumulative Distribution Function

The CDF approximation maps keys to positions in an array, resembling the standard statistical CDF. The
traditional CDF, found in probability and statistics, represents the likelihood of values being less than a given
key [10, 24, 25]. It uniquely characterizes probability distributions on real numbers[25, 26]. The CDF for some
sample data from [10] is shown in Figure 2.

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

191

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Data Relative position
1] 0.1 CDF Function
i 0.2 él,o —— Approximation
9 0.3 3 CDF
— 208
12 04 %
156 0.5 506
o7 0.6 204
58| 0.7 g
% 0.8 ;oz
98] 0.9 Q00 20 40 60 80 100
99 1.0 CDF Input (key)

Figure 2: The cumulative distribution function (CDF) view of a sorted array [10].
3.3. LEARNING BASE INDEX STATE OF THE ART

Learned indexes, view indexes as distributions mapping keys to locations, approximated using ML models.
They can be categorized into two groups: Fixed (Static) Learned Indexes and Dynamic Learned Indexes. Static
indexes only support read operations, which limits their usability, while Dynamic indexes enable read-write
operations and query pattern adaptation. However, Dynamic Learned Indexes face challenges, including
retraining models for changing data distributions and the associated costs. This hinders their practicality in
real-world dynamic workloads [14, 16, 17]. Therefore, as an attempt to overcome these defects, some of the
following studies propose techniques within the framework of a Dynamic Learned Index.

3.3.1. RECURSIVE MODEL INDEX (RMI)

One key finding from [6] is that the complexity of the CDF requires a hierarchical approach for accuracy.
The Recursive Model Index (RMI) is introduced, consisting of stages of regression models. When a query
arrives, it's processed through each stage to estimate the key's position. At stage [, M; models exist, with each
stage's model trained iteratively with loss L; such that f, is initialized [6]. The RMI differs from traditional
tree indexes: 1- It forms a Direct Acyclic Graph (DAG) structure. 2- Uneven coverage of records by models is
allowed. 3- Stage predictions aren't position estimates, but expert selections. 4- Max-error is unpredictable. 5-
Its size is fixed by total variables in models and final stage errors. 6- No inter-phase searches occur. RMI lacks
data update support and is limited for secondary indexes [6]. See Figure 3 for visual reference

l Key

> Model 1.1
o
/

o
% Model 2.1 Model 2.2 Model 2.3
[

— A a” N T
©
% Model 3.1 Model 3.2 Model 3.3 Model 3.4
o

l Position

Figure 3: Recursive Model Index (RMI) [6].

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

192

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

3.3.2.HYBRID INDEXES

The Hybrid Index, another static learned index introduced in [6], builds on RMI's advantage of
using different model structures across stages. Smaller neural nets (e.g., ReLU1) are suitable for
complex data distributions in upper stages, while basic linear regression models are efficient for
bottom stages. Extremely complex data might even resort to standard B-Trees at the lowest stage. See
Figure 4 for the training process (Algorithm-1). Hybrid indexes can restrict search space per key
based on the model used. Parameters like stage count, width, neural net configuration, and error
threshold can be optimized through grid search. If learning data distribution is impractical, all models
are swapped with B-Trees, making the worst-case performance comparable. Some overhead may
occur between phases, but overall performance is similar [6].

ALGORITHM 1: HYBRID END-TO-END TRAINING [6]

Input: int threshold, int stages[], NN_complexity

Data: record data[], Model index[][]

Result: trained index

M = stages.size;

tmp_records[][];

tmp_records[1][1] = all data;

fori « 1toM do

forj « 1tostages[i] do
index[i][j]= new NN trained on tmp_records[i][/];
ifi < M then

forr € tmp_records]i][j] do

p = f(r.key) /stages[i + 1];

tmp_records[i + 1][p].add(r);

11 | forj « 1toindex[M]. size do

12 index| M][j].calc_err(tmp_records|[M][j]);

13 ifindex[M][j]. max_abs_err > threshold then

14 | index[M][j] = new B-Tree trained on tmp_records[M][/];

return index;

O©oO~NOUIhWNPE

Figure 4: Algorithm 1: Hybrid End-To-End Training [6]
3.3.3. HASH-MODEL INDEX

According to [6], a method for better hash function training involves learning the CDF of data key
distribution. Contrary to range indexes, they avoid compactly storing records or strictly sorting them.
Under static learned indexes, the CDF is scaled to the desired hash map size M using (h(K) =
F(K) *» M) with key K as the Hash-Model Index's hash function. Conflicts are minimized if the
model F accurately learns the CDF. This hash function is independent of Hash-map architecture and
compatible with various methods [6]. RMI's recursive model design is applied. Index size and
efficiency have a trade-off influenced by the dataset and model, similar to RMI [6]. Inserts in hash-
model indexes mirror traditional Hash-maps. A key is hashed using h(k), and conflicts are handled
by the Hash-map algorithm. The learned hash function maintains efficiency, and inserts follow a
distribution akin to data distribution [6].

DOI: http://dx.doi.org/10.25098/8.1.30

193

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

3.3.4.LEARNED BLOOM FILTER (LBF)

Another static learned index, the Learned Bloom Filter (LBF) proposed at [6]. Utilized a Neural
Network model as an initial-filter (pre-filter [12]), followed by a small Bloom Filter as a secondary-
filter (backup-filter [12]). Unlike traditional indexes, which don't estimate key distribution, LBF takes
both keys K and non-keys U datasets into account for machine learning. The neural network is trained
for binary classification [6]. The output f(x) represents the "probability” that key x belongs to ¥.
while in the model, the FPR is reduced to a non-zero value, resulting in an increase in the FNR also
to a non-zero value. in contrast to Bloom filters. So, they set a threshold 7 above which the key is
considered present in X ,they establish x € X|f(x) = 7. To ensure zero false negatives, a set of false
negatives X, ={x € K|f(x) < t}, is derived for implementing an overflow Bloom filter
(secondary-filter). The model assumes the key exists if f(x) = t, otherwise it's checked with the
backup filter [6] as shown in Figure 11.

x (key]l

Model

Negative

fa) <

f(x) = 7| Positives

xEXK Positives | x € K
Y

S

Figure 5: Learned Bloom filter [6].

3.3.5.SANDWICHED LEARNED BLOOM FILTER

Sandwiched Learned Bloom Filter (Sandwiched LBF) also static learned index proposed by [13]
as an optimization of the Learned Bloom Filter from [6], by using additional Bloom filter (Initial
Bloom filter) in front of function f, so as to exclude almost all queries for keys not in K. Instead of
declaring that input x is in X, this initial Bloom filter forwards all matching elements to the learnt
function f. Otherwise, it produces an instant negative response (x € X). Then, as previously
(Learned Bloom Filter from [6]), they utilize the function f to try to eliminate false positives from
the initial Bloom filter. The backup filter at next step, used to return back keys from X that were false
negatives from f. If the initial bloom-filter is set up to eliminate more false positives at first, the
backup Bloom filter could be weak, and allowing almost everything to pass through, so it will be
reasonably small, so, any extra bits have to go toward the initial Bloom filter, where the budget
(amount) of the allocated bits for Bloom filters grows [13]. Figure 12 illustrate the Sandwiched
Learned Bloom Filter.

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

194

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

3.3.6. DORAEMON LEARNT INDEX

Proposed for dynamic workloads, the dynamic learned index (C. Tang, Z. Dong, M. Wang, Z.
Wang, and H. J. a. p. a. Chen, 2019) [14] improves latency by extending training data with access
frequencies and addressing access pattern and skewed queries. Doraemon caches learned models and
fine-tunes them when similar input distributions are encountered. It comprises three components:
Training Set Generator, Counselor, and Finalizer, adapting read access patterns [14]. To integrate
read access patterns, frequently accessed keys are duplicated in the training set. For keys with higher
access, their positions are shifted, enhancing accuracy without improving error boundaries. Counselor
tunes the model, while Finalizer retrains final stage models using the original dataset. Quick due to
linearity, this procedure ensures corrected position information [14].

3.3.7. FITTING-TREE

Another dynamic learned indexes called FITing-Tree proposed by (Galakatos et al., 2019) [15],
innovatively incorporates data awareness. Using piece-wise linear functions, it approximates an index
with limited error at creation, balancing lookup performance and space consumption. Employing an
adjustable error threshold, FITing-Tree adapts to datasets and workloads. A cost model helps
determine error factors for search latency or storage budget [15]. It models index as a monotonically
growing function mapping keys to storage locations, contrasting clustered B+ trees. FITing-Tree
segments data into variable-sized parts meeting error thresholds, maintaining a fixed-size array for
each segment. ShrinkingCone algorithm creates segments while expanding them within error
constraints, ensuring efficient segment length and insertion. Segments are arranged in a B+-Tree
structure for efficient retrieval. FITing-Tree stores only start keys and slopes for linear interpolation,
adapting to sorted data and non-primary key attributes, using indirection layers for the latter. Point
and range queries involve B+-tree searches followed by key location within segments [15].

3.3.8.ALEX-INDEX

The dynamic learned index ALEX [16] was designed to tackle challenges posed by short-range
queries, point lookups, data modification (inserts, updates, deletes), and bulk loading. It merges
learned index principles with established storage and indexing techniques. Unlike [6], ALEX adjusts
RMI height and shape dynamically depending on the workload. Storing data at leaf levels as in B+
Trees enables individual nodes to extend and split more efficiently, while exponential search corrects
RMI mispredictions. ALEX employs model-based insertion, enhancing search performance by
minimizing model mispredictions. Unlike [6], ALEX eliminates the need to adjust model count
parameters for different datasets or workloads [16]. ALEX's design involves a tree similar to a
B+Tree, with expanding/shrinking nodes using Gapped Arrays to absorb insertions and allow
accurate data placement through model-based insertion (Figure 6). Gaps are filled by adjacent keys
for optimal search efficiency [16].

ALEX combines dynamic expansion, node splitting, and selective model retraining based on cost
models adapting to changing workloads, ensuring efficiency despite dynamic data distribution
changes. These advantages are achieved without manual parameter adjustments [16]. Leaf nodes, or
"data nodes," store linear regression models, two Gapped Arrays for keys and payloads, similar to

DOI: http://dx.doi.org/10.25098/8.1.30

195

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

B+Tree leaf nodes. Internal nodes predict the position of child pointers using models, aiding traversal
and partitioning the key space flexibly (Figure 6) [6].

Root

Key
Legend Node | 1]

Internal
Node E
7 N

Adaptive

(pa /T /30 CRMI
"‘\Ni‘fe/“ \=/\ -

Il Key

(] Gap

\ Gapped

NG

\

XN/ /
\exponential/
~search

Figure 6: ALEX Design [15].

3.3.9.PIECEWISE GEOMETRIC MODEL INDEXES (PGM)

The Piecewise Geometric Model index (PGM-index) by (P. Ferragina and G. J. P. 0. t. V. E.
Vinciguerra, 2020) [17] is a fully dynamic and compressed learning index. PGM adapts linear models
to keys with an error tolerance ¢ in a recursive structure. PGM adjusts to space or latency constraints
and excels in predecessor, range, and update queries under high-performance limits [17]. The PGM-
index is parameterized with € > 1, solving the indexable dictionary issue on a multiset S of n keys
from universe U. A linear model approximates key locations, and binary search corrects predictions
(e = 2) [17]. (Algorithm 2) in Figure 7 demonstrate PGM's recursive construction. PGM's first
component is the Piecewise Linear Approximation model (PLA-model), using an optimal streaming
algorithm for minimal segments O (n). It maps keys to predicted array locations, maintaining &

distance. Recursive construction transforms the optimum PLA-model into segments, adapting to
key distribution. This recursive structure forms the PGM-index's levels and nodes. PGM's unique
construction differs from FITing-Tree and RMI. Each PGM level has a PLA-model, and nodes hold
segments from that model [17]. (Algorithm 3) in Figure 7 demonstrate PGM's recursive search and
construction [17].

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

196

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Figure 7: (a) Algorithm 2 the build of PGM Index [17], (b) Algorithm 3 Top-Down PGM Recursive search [17].

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

ALGORITHM 2 BUILD-PGM-INDEX(4, 1, €) [17] Algorithm 3 QUERY(4,n, &, levels, k) [17]
1 | levels = an empty dynamic array 1 |[pos=f.(k), wherer = levels[0][0]
2|i=0keys=4A 2 | fori =1toSize(levels) — 1
3 | repeat 3 lo = max{pos — ¢, 0}
4 M = BUILD-PLA-MODEL (keys, €) 4 hi =min{pos + ¢, Size(levels[i]) - 1}
5 levels[i]=M; i = i + 1 5 s = the rightmost segment s’ in
6 m = SIZE(M) . le:els[l][lo, hi] r?uch t:atfs key < k
t = the segment at the right o
7| | keys = [M[0]. key, ..., M[m — 1]. key] J gntots
. 7 pos = [min{f;(k), f; (t. key)}]
8 luntilm =1
8 | lo =max{pos — ¢, 0}
9 | return levels in reverse order 9 | hi =min{pos + gn- 1}
10 | return search for k in A[lo, hi]
(a) (b)

3.3.10. RADIXSPLINE INDEXES (RS) (READ-ONLY)

The RadixSpline (RS) index, introduced by (A. Kipf et al., 2020) [18], maps keys to their data
locations. RS is a static learned index that doesn't support single updates. It involves spline points
approximating data distribution and a radix table for efficient lookup [18].

RadixSpline's two components are: (1) spline points approximating data, ensuring predicted
lookup position within an error bound, and (2) a radix table with r-bit prefixes as indices, narrowing
spline search space. At lookup, spline points around the key are located using linear interpolation
within a small data region [18]. RS construction integrates GreedySplineCorridor algorithm for
spline and radix table creation in one pass [18].

In RS lookup (illustrated in Figure 8): an r-bit prefix determines radix table pointers for a limited
spline search range. Binary search locates spline points around the key, linear interpolation generates
approximate position, and a final binary search within error bounds refines the position [18].

47183,

Lookup key: - ;11 7900 0100 1111,
o|1]2]3]4 7| 1] Radix table
\) — Pointer
¢
| &
% HJ () Spline point
2 v o
-),.(f — CDF

Figure 8: lllustrates an example of radix spline index lookup [18].

DOI: http://dx.doi.org/10.25098/8.1.30

197

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

4. DISCUSSION AND RESULTS

This section is split into two parts, each with a distinct purpose. In the first part, we
comprehensively explain and analyze the reviewed techniques, covering time complexities,
structures, strengths, and limitations. This provides an understanding of each technique's applicability
and use cases. The second part summarizes the theoretical analyses using two tables, making the
information concise and accessible. Additionally, we present a taxonomy categorizing Learned
Indexes into static and dynamic categories, further enhancing clarity. This structured approach
ensures readers grasp the techniques' nuances, catering to those seeking both in-depth insights and
quick reference.

4.1.CRITICAL DISCUSSION AND EXPLANATION

The section has two parts: Part one explains the techniques, including time complexities,
structures, strengths, and limitations, giving insights into their use cases. Part two summarizes the
analyses in concise tables, adds a taxonomy categorizing techniques into static and dynamic Learned
Indexes, enhancing clarity. This structured approach aids readers in understanding nuances and caters
to different reading preferences.

When analyzing theoretical aspects of indexing techniques, including complexities and Big O
notation calculation for traditional database indexing and Learned Indexes, exact analysis can be
challenging due to lack of explicit details, comparison operations, and implementation specifics in
the research. Factors contributing to this challenge are explained later in this section. Instead, an
estimated Big O notation can be used based on fundamental characteristics of the technique [26]. This
estimation helps approximate performance and understand scalability. Big O notation is a
mathematical way to describe an algorithm's upper bound complexity. It aids in comparing
techniques, understanding scalability, and making informed decisions for specific applications [27,
28]. This approximation, though valuable, is not exact, focusing on idealized computational models
and ignoring hardware and software complexities.

Actual performance is influenced by hardware constraints (CPU architectures, memory
hierarchies, disk access times) and implementation details, introducing deviations from theoretical
analysis [6, 16, 26-28]. Key factors include:

1. Algorithmic Variations: Real-world implementations may differ due to optimizations or
heuristics, affecting operation counts [6, 16, 26-28].

2. Dataset Characteristics: Data type, size, distribution, and skewness impact complexity and
indexing strategies [5, 6, 16, 21].

3. Implementation Details: Specific choices in optimization, data structures, and implementation
affect time and space complexities [6, 16, 26-28].

4. Machine Learning Technique: Choice of ML algorithm impacts computational demands, training
complexities, and prediction accuracy [6, 10, 23].

5. Number of Models: Using multiple models or auto-generation based on data/query workload adds
computational complexity [6, 10].

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

198

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

6. Retraining: Frequent model retraining impacts performance, adding time/resource demands [6,
10, 14-16].

7. Error Bound Factor: Error bounds affect prediction accuracy and efficiency trade-off, influencing
complexity and performance guarantees [6, 10, 15-18].

8. Query Type and Workload: Query type and workload characteristics introduce variations in
complexity based on indexing strategies [6, 10, 15-18].

Performance can vary based on factors mentioned earlier. The following offers a detailed overview
of the reviewed techniques

On a hand, traditional indexing techniques like B*tree have limitations. B*tree has O(B logg n)
lookup and 1I/0O complexity, also O(B logg n) complexity for dataset modification (insert, delete,
update) in worst and best cases. It consumes 0 (n) space and has building time of 0(n log? g1 in

worst-case considering maximum rebalancing of the tree, and building time of O(n) in best-case
scenarios. B*-Tree is adaptive and versatile, but lacks adaptive learning on CDF, struggles with
skewed distributions, and can have overhead for large datasets. It suits relational databases, file
systems, key-value storage, transaction processing, and search engines.

While on the other hand, Learned Indexes enhance query efficiency using machine learning and
CDF-based statistical models to replace traditional structures. Despite challenges in theoretical
analysis and Big O notation, state-of-the-art learned index techniques are examined as follows:

The Recursive Model Index (RMI), a Learned Index with a Directed Acyclic Graph (DAG)
structure, aims to reduce space complexity. In worst-case scenarios, high irregularity of key
distribution and complex models hinder accurate predictions. Conversely, best-case scenarios with
regular CDF patterns and lightweight models enable efficient key partitioning. Let n be dataset size,
s stages, and m model space complexity. RMI space complexity for both scenarios approximates
O(s * m). In best-case scenarios, it can minimize if models are lightweight, metadata requirements
are minimal, CDF enables efficient partitioning, and models can be shared. As a result, RMI can
approximate O(1) without guarantees, indicating constant space usage. Lookup time complexity
approximates O(s) for both scenarios. In worst cases, traversing all stages may be needed due to
irregular CDF or skewed distribution, leading to O(s) time complexity. In best cases, with regular
CDF or accurate predictions within a stage, lookup time may be 0 (1) without guarantees, indicating
constant time complexity. RMI's I/O time complexity mirrors lookup time for worst cases, leading to
0(s) complexity. However, in best cases, optimal disk access patterns result in efficient data block
access and 0(1) complexity. RMI has a build time complexity of O(s * n) in both cases due to
traversing the dataset at each stage. It lacks data modification capabilities, supports limited query
types, has training overhead, and balances accuracy and performance trade-offs. Overall, RMI is
suitable for large datasets, in-memory databases, data warehousing, analytics, read-heavy workloads,
and decision support systems.

DOI: http://dx.doi.org/10.25098/8.1.30

199

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Hybrid Indexes, a subset of Learned Indexes, combine RMI and traditional B-tree structures. Last-
stage models may be replaced by B-trees if learning is challenging. It inherits characteristics of both
methods, leaning towards one depending on the scenario. Similar to RMI, Hybrid Indexes aim to
minimize space complexity, approximating O (sm) at best-case and O (n) at worst-case scenarios. In
best cases, lookup complexity is around O (s), and I/O complexity approximates O (1). In worst cases,
lookup and I/O complexities are approximately O (s + log n) when last-stage models are replaced by
B-trees. Like RMI, Hybrid Indexes have a significant build time of O (s * n) in both scenarios. Hybrid
Indexes, like RMI, depend on key distribution, lack data modification, support limited queries, and
have training overhead. Balancing accuracy, size, and performance is crucial. These characteristics
make Hybrid Indexes suitable for large databases, data analytics, read-heavy workloads, and latency-
sensitive applications.

The Hash-Model Index is a Learned Index used for point queries, replacing traditional hash
functions with a learned model from key data's CDF. Its structure mostly retains traditional hash index
components. Key factors affecting its time and space complexities are the hash model, dataset and
hash table sizes, and collision handling. For dataset size represented by n and hash table size by d
(buckets), the best-case occurs with ideal collisions (even distribution or no collision). Lookup and
I/0 complexities approximate O(1) in the best-case, while build time complexity is O(n) regardless
of the scenario. Worst-case lookup and I/O complexities could approximate O (n). The Hash-Model
Index lacks structural adaptability, supports only point queries, has longer build times than traditional
hash indexes due to model learning, and larger size due to added storage for the hash model. Suitable
use cases include scenarios requiring high-speed querying.

The Learned Bloom Filter (LBF) within the Learned Index framework combines a learned model
and a traditional Bloom Filter. In lookup, the worst-case scenario occurs when the queried key isn't
in the filter, resulting in a false negative. This directs the lookup to the back filter, incurring extra
computation. In the best case, the queried key is present in the filter, yielding a correct positive
prediction by the model. Despite model and back filter complexities, LBF's lookup, 1/0, and space
complexities are approximately 0(1). However, LBF's complexities are greater than traditional
Bloom Filters due to model intricacies and training overhead. Building LBF has a complexity of
0(n), regardless of the scenario. LBF doesn't support dataset modification, handles only existence
queries, and while it reduces false positive rates, some still occur. It's suitable for large-scale datasets
with complex patterns and applications with low tolerance for false positives.

The Sandwiched Learned Bloom Filter enhances the Learned Bloom Filter by adding a Bloom
filter before the learned model. This reduces negative queries sent to the model, improving query
performance. In the worst-case scenario, if the initial Bloom filter has high false positives or the
model struggles, the front filter's benefits lessen. In the best case, with a good initial Bloom filter and
accurate model predictions, the approach shines. The time and space complexities remain similar to
Learned Bloom Filter. The front filter can enhance query performance by avoiding model overhead
for negatives in the best case. However, it introduces additional space and potential computational
complexity during construction and lookup in the worst case. Like LBF, the Sandwiched Learned

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

200

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Bloom Filter involves a trade-off between efficiency and accuracy. It's suited for LBF use cases and
scenarios with high query throughput.

Doraemon, a Learned Index solution for dynamic workloads, introduces complexity with
components like Training Set Generator, Counselor, and Finalizer, augmenting data based on access
patterns. In the worst case, if data distribution changes drastically or becomes skewed, predictions
falter, impacting lookup times. A major distribution shift may demand extensive model retraining,
degrading performance and efficiency. Conversely, Doraemon excels in stable or predictable
distribution scenarios, leveraging cached models for accurate predictions and faster lookups. Build
time complexity approximates O(n) for both cases, considering extra complexity in the worst case.
Lookup and 1/0 time complexity depend on model complexity, approximating O (1) in the best case.
Space complexity is model-dependent regardless of the structure. Dataset modifications' impact
depends on structural implementation. Doraemon's sensitivity to data distribution and reliance on a
representative training dataset can lead to computational overhead and complexity. Adapting the
structure for dynamic modifications can be challenging. Doraemon requires storage for trained
models and cached data. It suits database indexing, time-series data, log analytics, 10T data, and real-
time analytics.

FITing-Tree, a mixed Learned Index, embeds Learned Models (Linear Segments) within a B*-Tree
structure. With n as dataset size, m models, B B+-Tree order, buf f segment buffer size, and ¢ error
threshold, build time complexity at worst-case (max segments) is approximates O (n + loggm), and
at best-case (min segments) is O (n). Lookup time complexity (worst-case) is O(logg m + log, € +
log, buff), and (best-case) is O(logg m). 1/0O time complexity is O(logg m) regardless of the
scenario. Space complexity worst-case is 0(log, n) and best-case is 0(logg m), Modification
(insert, delete, update) time complexity is Modification (insert, delete, update) time complexity is
O(logg m + buff) at worst-case, and O(logg m) at best-case. FITing-Tree supports common
query types and dataset modifications, adapting to distribution changes. Sensitive to data distribution,
it can have a large model count, affecting B+-Tree height. The error threshold balances size and
performance. FITing-Tree suits large-scale datasets, complex patterns, data exploration, analytics,
read-heavy workloads, latency-sensitive apps, clustered and non-clustered indexes, and applications
with dataset modification.

ALEX, a mixed Learned Index, balances size and performance dynamically using cost models,
eliminating manual tuning. Overhead before RMI initialization and index construction for node
expansion and splitting. Given n (dataset size), B (max node size), m (min models/partitions), ALEX
space complexity is O(n + m). Build time complexity worst-case approximates (nlogg m +
log B + m) , best-case O(n logg m). Lookup time complexity O(logg m + log B), , best-case
O(logg m). /O time complexity worst-case O(logg m), best-case 0(1). All modification (insert,
delete, update) time complexities approximate O (logs m + log B + m) worst-case, O(logg m +
log B) best-case. ALEX supports point and range queries. Each level partition requires model
training, introducing initial overhead. Sensitive to data distribution, skewed data leads to more
splits/merges, impacting performance. Adaptive to changing data distributions, yet rapid changes may
affect model-based pointers and performance. ALEX reduces memory/storage but still needs

DOI: http://dx.doi.org/10.25098/8.1.30

201

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

additional storage. While efficient with queries and changing distributions, it lacks explicit
optimization based on query patterns.

PGM-index, a Learned Index for point and range queries, balances index size and performance
through dynamic recursive structure. With n (dataset size), € (error threshold), ¢ > 2¢, B, (block
size), m_opt (optimal models/segments), PGM-Index aims to minimize models while specifying €.
Regardless of model complexities, PGM-Index's build time complexity approximates O (n). Lookup
time worst-case (logg, My + log, €) , best-case O(logg, meype). 1/O time worst-case
O(log. mype), best-case O(1). Insertion, deletion time complexities O(log n) amortized worst-
case, O(1) best-case. PGM-Index's dynamic array introduces overhead, inefficient memory use
during resizing. Query distribution impacts performance; real-time learning may not keep up with
data changes. PGM-Index versatile and powerful, suitable for range queries, time series data, low-
latency applications. Fits in-memory databases, space-efficient systems. Handles high-dimensional
data efficiently for multi-dimensional indexing.

RadixSpline is a static learned index designed for efficient index building, focusing on read-only
scenarios. It can be built in a single pass over sorted data, with complexities depending on parameters
like n (dataset size), € (error bound), r (prefix radix bit), and k (spline points). While suitable for read-
heavy workloads, it lacks support for dynamic dataset updates. Its build time complexity is O(n)
regardless to scenario. Space complexity approximates O(k + 2") when k < n for both scenario
with significant different based on &. Lookup time worst-case is (log, k) , best-case 0(1). I/O time
is similar, approximating O (log, k) worst-case, and, O (1) best-case. RadixSpline doesn't adapt to
changing data distributions, focusing on individual key lookups. Its construction process is complex,
involving various checks and adjustments. It's well-suited for batch processing of large datasets,
archival data with infrequent changes, and data warehousing scenarios. Also useful for historical data
analysis.

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

202

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

4.2. THEORETICAL RESULTS

This section includes two components: a summary table compiling theoretical analyses and a
taxonomy classifying reviewed Learned Indexes.

4.2.1. SUMMARY TABLES

We summarize the theoretical analyses from the initial result component. in two tables for clarity.
These tables condense key findings, making them easily understandable and accessible. They offer a
quick overview of each reviewed technigue, aiding comparison. The summary tables are presented in
(Table 1 and Table 2).

Key features of the reviewed Learned Indexes are divided into two summary tables. The first table
covers structure, constraints, and use cases. The second table includes complexities, dataset
modification (insert and delete), and enabled properties. Symbols used for representing complexities
are:{n (number of keys), B (tree order/fanout for B*-Tree, Fitting-Tree, and ALEX), B, (page-size
for PGM), s (stages/level for RMI and Hybrid Index), € (error bound), m (number of generated
model),my;ccqy (Nnumber of the linear models generated by Fitting-Tree's greedy algorithms), m,,;

(optimal number of linear models generated by PGM 's optimum algorithm, buff (buffer location
in Fitting-Tree), ¢ (variable fan-out for PGM data structure where ¢ > ¢, and k (number of spline
knot generated by RadixeSpline’s spline algorithm of }.

It's important to note that these complexities are simplified assumptions, approximating the actual
model complexity and training process. In reality, the build time complexity would also be affected
by the previously mentioned factors such as the quality of the dataset, the complexity of the learned
model architecture, and the available computational resources.

4.2.2. TAXONOMY

In the next section, a taxonomy of the reviewed Learned Index techniques is presented. It divides
these methods into two groups: static and dynamic Learned Indexes. The static category includes
Existent Indicators, Point Indexes, and Point/Range Indexes. Within this, Learned Bloom Filter and
Sandwiched Learned Bloom Filter fall under Existent Indicators, Hash-Model under Point Index, and
RMI, Hybrid, and RadixSpline under Point/Range Index. In the dynamic category, all techniques fall
under Point/Range Indexes: Doraemon, Fitting-tree, Alex, and PGM. This taxonomy offers a
structured way to understand these techniques, aiding in their organization and providing a
comprehensive view of Learned Indexes. See Figure 9 for the taxonomy illustration.

DOI: http://dx.doi.org/10.25098/8.1.30

203

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

5. CONCLUSION AND FUTURE WORK

In this comprehensive survey, we've explored the emerging realm of learned indexes, analyzing
their complexities, capabilities, and limitations. Through a well-defined taxonomy, we've illuminated
the diverse landscape of learned indexes, revealing their potential and challenges. The survey began
by addressing fundamental questions about learned indexes, uncovering their advantages and
drawbacks. Learned indexes offer improved performance, reduced memory overhead, and potential
to revolutionize data indexing and querying. Efficient point and range queries, adaptability to data
shifts, and reduced 1/0 operations showcase their applicability to modern data challenges. Yet, as the
survey progressed, it became evident that existing techniques are not fully equipped to meet various
application and dataset needs. While promising, learned indexes face challenges such as variable
query patterns, sensitivity to data distribution, training overhead, memory usage, and the accuracy-
size-performance trade-off. Further innovation and adaptive techniques are necessary to bridge
theoretical analyses with practical implementation. This survey points to the future of learned indexes.
New techniques are needed, blending traditional index structures with the intelligence of learned
models. Dynamic data requires indexes that evolve with it, responding to distribution and query
changes effectively. In conclusion, this survey offers an expansive view of learned indexes,
highlighting their potential and limitations while emphasizing the need for focused research and
innovation. As data evolves, the learned index paradigm must discover techniques that harmoniously
blend tradition and innovation. Through exploration, we aim to propel learned indexes toward a future
that empowers data-driven applications with efficiency, adaptability, and lasting relevance.

[Learned Index]

>

y

N
Static Dynamic
t

i

A 4 A 4 A 4

A
Existent Poin Point/Range Point/R:
Indicators Index Index Index

g
Li=]
@

Learned

Bloom Hash-Model RMI

Filter

Doraemon

Hybrid Fitting-tree

Sandwiched
Learned
Bloom
Filter

RadixSpline Alex

i)~
il

PGM

Figure 9: Taxonomy of the reviewed state of the art Learned Index

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

204

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

186-209

PP

imaniya

ty — Sula

Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Iversl

[
D
c
(1
=
o
Y
o
©
c
—
-}
o
)
2
=
c
2
O
(2]
(3]
<
T

205

‘satang) 25wy Jof woddng paymury

(12pory 10ty ds 10 Leiry

‘Sursnoyare, Ble ‘Ble(] [BAIRIY “Sulssasold vle(e . surpdgxape

FSNOGRIEM, BIRL BB ATy ShT d B e ‘noneyuswa(dun pue s2a014 vonpnsuo)) xajdwo)) ‘uononysuo)) auels Kuo-pesg| + Lewry ajqel xipey) (2T om] resaPed
JB(] [PUOISUSWIT-USTY ‘STU3}sAg IAPUSIITOsy| Suruea awm-[exy daay o) Ajpiqeuy

sunuQ) ‘eleq Sunueang ‘Surkapu] LouseT-moT vl ssUag s ‘saseqeie| ‘saFumey) eleq SMURUA ‘UOLI[2G 1AW ‘PLSINAQ) TOTS[(]/UONIASU] “KIANISUSS [2POTA] AYI[-231] NDd
Ksowrap-uy “Furapuy passarduro)) pue oruweuA(“sauang) a5uey Surkapuy aseqere| £12nd) ‘prayI2AQ) AIOWIN [EUONIPPY ‘PeIRAQ Furtrer] “Asuspuada(y GONNqLYSI(Bleq

‘suraled £1200) 01 1depy LUS20p 20ULUHORR 2582133(] ABTI S25uey

SOLIEI20g SONATRIY W] -2y d Arng 2 ICEPY i P F2d a 10

: : - 13se1e(] Jusnbarg pue pidey ‘aSe1o)g pue AI0WSJA [EUONIPPY ‘SUOTIESIPOIA 13SEIE(T [2POIN 29I=231] X3y

‘Furssaoolg epe(] jof ‘suonearddy sondjeny o ‘ele(] saURg-AWIL] ‘Sjaseie(] 2[B2G-351e]

0] anp Furuenay 1o SuUleds [2PoJy ‘prApRAQ Suturel] ‘Aouspuada(] uonnqusi] BIE()

TONEIIpOTA J2skle AL suonearddy ‘saxapur (paiaisn[)

(2omenmIoLIag pUE ‘2Z1S) U2MISE [JO-2PEIT ‘SUCTIBIIPOTA

-toN]) A1epuosag ‘xapui (parjsnpd) ‘suonestddy aanisuag-LousjeT ‘speoppion Laeapy 125E1B(] 01 30p SUTUIRN2Y [2POJy MWBISH 221-+g SIT Ul 3523151] Ue 0] pea] pue 281e] (2poJAL JO 221T-+q) paxnu 2217 -Bmypig
-peay ‘sonk[eny pue uoneio[dxy eje(‘swaped eie(xajdwo)) ‘sjaseie(q 2[Bag-a5ne] 2q UBd S[2POJA] TeAUT] JO JaqUINA] ‘peatEasQ) Sunner] “Louspuada(] uonnquysiq el
SOLIEU20G SONATEUY UM] -[8 *STOTIEIIPOTA|
. . _ : S SOHAT :q tLeTEd ~ N) HESIPON [PPOIN pawea] TOWIEIO(T|
‘Bussaorg eye(10 ‘suonearddy sondjery S0 ‘el SAUAG-UN] ‘SWRISAS aseqeieq 12se12(] 01 anp FUNIENY [2POJA PEAP2AQ SWUTRI] AIANISUS UONNQLISIT BIE
_ . - Loempdoy pue £5uadi T23M]2
sorren20g Indysnomy 1 A12nd) YSTH ‘s2ANIS0 | VP e 4 aq1

as[eJ 20ueI2[0] JamoT I suonedrddy ‘suraped eleq xa(dwo)) ‘s1asele(2eas-231e]

[O-2pel] "My 2anisod ase] ‘I 01 paie[ay uondumsuo)) AIOUISJA] TONIPPY ‘PEIFA0
Sumurel] “sad{] Lang) paymumr] Anpiqeu] sajepdp) 1aseie “Louspuada uonnguysiq ele(

(s121[1J-00]g + 2poJy) paxAu

PAATMPUES

mu.,.rmmom i Ecm. u.ft,wﬁwm ENEEN mm._aao.n%mp 1. 03 Py aou.&:ﬁﬁdo.u Liowapy ‘peaypaag (ESII2-O0O[ET 4+ PO poxTuI 1T
as]eg saueIajo] Jamo My suonearddy ‘suraned eleq xardwo)) ‘saseie 2ees-a8ie| Summery ‘sad{ Lang) paymm “Aiprqen] saepdn) 1esereq “ouspuadaq vonnquusiq vk : :
- - 271§ X2PUT PUE 22ULTLIONSJ Ua2amlag JIQ-2pel] ‘28es) AIOTH2]y] PaseaIdu] ‘peatiasg)
Suend pe2ds-ysiy Summer] “sadd] Lrang) paymmr Apqeut sajepdn) j1aseieq “Louspuada nonngusiq e1e| [Ppottt S [PPONCHSeH
ad ‘(2ouenmiozag
*STIOTIE: 7 8
. R . & SHORENCCY ub,:wzum pue ‘2715 ‘L28mday) nasmiag Jjo-apel] a5esy) Ltotay pasearsu] ‘peatpraag| (XpUT-03TV + S[APOAL [JATI) paxmu PUqAH]
- o7 *sDR M AABSTI=pEaT - PIIY PUE TOTIE PIBCT “SASEQRIECT [EIC - E E
ASUNET SPEOPHOM AAESHIPESY "SINA[EIY PUE UOEIOIN BIE("S35equiE(] A[E05-35] Surmes] ‘sadS1 L1and) payum “Ariqen] sajepdn) 1eseie(q Aouspuada(] nonnquusi ele(|
sta)shg poddng TorsTaa(“speopjiopy Asea-pesy] “BOMETLON2J puE £3RINDIY U213 TJO-2PRI] ‘PRATI2AQ) T
*sanf[etrny pue SUISNOtaTeA B1R(T ‘S2SBqRIR(] AIOWSA-UT pue Syae)) ‘sjaseje] 23t | Surmery sad{ Lrand) payrury Aiumqeut saepdn) 1eseyeq “Kouspuadaq uonnqunsiq eleq e A
SAUTBUT [AILaC "STIa]SAS FUISSa301 UONIesUeT stasuieq 2857 50
= 2IE2G 'S y O] bt]
. c L .mw s d ! o PEAYIAAQ) [ENUR0 “2Z1S 125818 21 01 Sutprosoe 20edg dn saxfe] ‘SUONNQINSIT Pamays 2211 22174+
"SI0 2NTe A -ASY ST S AT "saseqele EUOT]E[23] A[UTEUI SUTK2PT] 2SEqElE, b 3 : X .)
15 SMEAA 148 o1 AP [PRORT] Y AfHEN SUIKSpH] 3eqeieq 107 Teumdoqng ‘woneznundQ paseq-uonatpalg 1o I A vo sutnres] aandepy 1o joe]
sase)) as[] J[qenng SIUIRLISTUO.) amonng anbrugaay

I 3/qp) Aibwiwns :T 3|qpo|

//dx.doi.org/10.25098/8.1.30

: http:
@O0

DOI

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

186-209

PP

ty — Sulaimaniya

Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

IVersli

[
-]
c
8]
<
©]
Y
o
©
c
—
-}
o
)
(&}
=
=
c
2
O
(2]
(3]
<
T

sauang) . . . (. 5 (. . (agq1

o, o oN oN TIN 3 . u u

N N N | F— (v/N) (¥/n0 (¥/ND (¥/N (mo (Do (Mo (1o o (no ®o (Wo s

satang) . P | N

oN oN oN oN u.;,ﬁzu.m_ (v/N) (w/N) (V/ND (VN (Do (Mo (10 (1o (Do (1o (Mo (Mo J4q1
sauRng) . = . S - p p -

oN oN oN °oN ymog (v/N) (v/N) (v/N) (v/n0 (o (wo (Do (0o (Do (wo (wo (Wo [2POIN-TSYH
sau2ng)

oN oN [remred| o afueyg (v/N) (v/N) (v/N) (v/N) (o (wo (o | (uder+s)o (s)o (w0 +5)0 (4:5)0 (u:9)0 PRAH
pue nog
sauRng)

oN | oN | o | oN aSusy (w/N) (v/20 ¥/ (¥ ()0 | (ws)o | (Do (s)o ()0 ()o (sx1)0 (5410 DA
pue jmog

. sad{1 1TV - . = I TN P ‘o | . = PR = I R,
2% oN WD | s=& oy (u @801)0 | (1 801)0 |(u Bo1g)o |(u 501 g)0 (u)0 (u)O (Mo (u @801)0 (u 301 9)0 (u gZo1q)0 ()0 (u €3o1u)0 2217+
0 m = = E a W aseyisag [aseyistopy | asenisag | asen istopm

oS o= E g5 8 s = ase)

Z = m. m = 5 B : - ase) 1sag fased som ot 258 1STOA ase) Isag 2580 1S10M aseyisag [=seD sop

S 2 == £] S &

AS gl = ,m = o m_. 21212g p2suy anbrmpaa]

TOTRIIIPOTAL 12581R(T 2z1s el amm diojoo] awm prmg
anpadorg sapqeug

S U,E;,.Muﬁnﬁﬁo D paiewnsg

Z d/qul Aibwwing :z 3|qo |

//dx.doi.org/10.25098/8.1.30

@IS0

http

DOI

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

206

http://dx.doi.org/10.25098/8.1.30

186-209

PP

The Scientific Journal of Cihan University — Sulaimaniya

Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

3
1
]
s

z

207

sauRn)
oN |enreq| sex | oN | sBwed | (VN (v (v wN [Ge+rpo(e+Po Mo | (¥Feno (Mo (¥ Bopo (1o (wo swdgxapey
pue 1mog
wuwu:O pasy.iouw pasy.iouw 1o o e €5 e TS (3 5o+
2K | X | x| x| SFwew (Do (u Bop) (Do @sopo | (40 | Puwo (Mo | (Pu “epo | (*Fu B0 | o 2 (o (wo nod
pue ;o 10 DO w 3010
saun) - - - o 3
. . o, (@3e] | (w+gdop [(g3e (w+ g So[. as (g3 g3 (e +g 30+ o
2K oN oON 2% fhowﬂwm cwgiopo| + waiopo | +wgsopo | + w giopo (w+wo | (w+wo | (DO (m or)0 (w E5op)0 + wBopo (w g5o1u)0 w o[190 Xa[y
¢
g (fing g (g (g G
Apeaid Apoaid S . . i {poaud
ok | on | sex | s ﬁmm 4 Am..o O]] 5o s i | (emsug [(ussono [(o [(#u Fono | (B gsono [For+ Bor+| (w0 ﬁo H__z aa11-Bumig
Jsoury’ 3010 Topo 5oDo oo ®2du F3o)0 So1+w)0
- o o - sadd1 v P J—— J— - wapuadaq | wepuadag () wapuadag ® wuzpuadag @) HouaEIo
A N N A Jsory PIE[RIUL | PRI | pAav[arup) | paieaiup) IPPOTR 13poTy o 13pOrN Do 13poTy 0 0] 1odg
: saLRng) . L I P 91
ON | oN | oN | oeN | o] G (v/N) (v/N) (v/N) (Mo (Do | (Mo (Do (Do (1o o o T

//dx.doi.org/10.25098/8.1.30

http:

@O0

DOI

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

A. Silberschatz et al., Database System Concepts, SEVENTH ed. McGraw-Hill Education, 2
Penn Plaza, New York, NY 10121, 2020.

G. K. Gupta, DATABASE MANAGEMENT SYSTEMS. McGraw Hill Education (India) Private
Limited, 2018.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, Seventh ed. Pearson, 2016.
C. Wijesiriwardana and M. F. Firdhous, "An Innovative Query Tuning Scheme for Large
Databases," in 2019 International Conference on Data Science and Engineering (ICDSE),
2019, pp. 154-159: IEEE.

A. aminuddin et al., "ANALYZING THE EFFECT OF DATA SIZE VARIATION ON THE
PERFORMANCE OF B-TREE AND HASH MAP INDEXING IN MYSQL AND
POSTGRESQL PLATFORMS," Journal of Critical Reviews JCR, vol. 7, no. 12, 2020.

T. Kraska et al., "The Case for Learned Index Structures," presented at the Proceedings of the
2018 International Conference on Management of Data, Houston, TX, USA, 2018. Available:
https://doi.org/10.1145/3183713.3196909

M. Valavala and W. Alhamdani, "A Survey on Database Index Tuning and Defragmentation,”
International Journal of Engineering Research & Technology, vol. 9, no. 12, pp. 317--321,
2020.

P. Neuhaus et al., "GADIS: A genetic algorithm for database index selection,” in The 31st
International Conference on Software Engineering \& Knowledge Engineering, Portugal,
20109.

J. Zhang and Y. Gao, "CARMI: A Cache-Aware Learned Index with a Cost-based
Construction Algorithm,” Proceedings of the VLDB Endowment, vol. 15, no. 11, pp. 2679-
2691, 2022.

R. Marcus et al., "Benchmarking learned indexes," Proceedings of the VLDB Endowment,
vol. 14, no. 1, pp. 1-13, 2020.

P. Ferragina et al., "Why Are Learned Indexes So Effective?,” in International Conference
on Machine Learning, 2020, vol. 119, pp. 3123-3132: PMLR.

M. Mitzenmacher, "A Model for Learned Bloom Filters and Related Structures,” arXiv
preprint arXiv:1802.00884, 2018.

M. Mitzenmacher, "A Model for Learned Bloom Filters and Optimizing by Sandwiching,"”
Advances in Neural Information Processing Systems, vol. 31, 2018.

C. Tang et al., "Learned indexes for dynamic workloads," arXiv preprint arXiv:1902.00655,
20109.

A. Galakatos et al., "Fiting-Tree: A data-aware index structure," in Proceedings of the 2019
International Conference on Management of Data, 2019, pp. 1189-1206.

J. Ding et al., "ALEX: an updatable adaptive learned index," in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp. 969-984.

P. Ferragina and G. Vinciguerra, "The PGM-index: a fully-dynamic compressed learned index
with provable worst-case bounds,” Proceedings of the VLDB Endowment, vol. 13, no. 8, pp.
1162-1175, 2020.

208

DOI: http://dx.doi.org/10.25098/8.1.30
@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30
https://doi.org/10.1145/3183713.3196909

The Scientific Journal of Cihan University — Sulaimaniya PP: 186-209
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

[20]

[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

A. Kipf et al., "RadixSpline: a single-pass learned index,” in Proceedings of the Third
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management, Portland, Oregon, 2020, pp. 1-5: Association for Computing Machinery.

Y. Wang et al., "Treator: a Fast Centralized Cluster Scheduling at Scale Based on B+ Tree
and BSP," in 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing
& Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City, NY, USA, 2021,
pp. 324-335.

A. Hadian and T. Heinis, "Interpolation-friendly B-trees: Bridging the Gap Between
Algorithmic and Learned Indexes,” in Proceedings of the 22nd Internationa IConferenceon
Extending Database Technology (EDBT), 2019, pp. 710-713: OpenProceedings.org.

S. Mukherjee, "Indexes in Microsoft SQL Server,” March 6, 2019. Available: at SSRN:
https://ssrn.com/abstract=3415957 or http://dx.doi.org/10.2139/ssrn.3415957

V. Nasteski, "An overview of the supervised machine learning methods,” Horizons, vol. 4,
pp. 51-62, 2017.

R. Muhamedyev, "Machine learning methods: An overview," Computer Modelling & New
Technologies, vol. 19, no. 6, pp. 14-29, 2015.

J. Sanchez, Probability for Data Scientists, 1st ed. San Diego: Cognella Academic Publishing,
2020, p. 362.

A. Spanos, Probability theory and statistical inference: Empirical modeling with
observational data, Second ed. Cambridge, United Kingdom: Cambridge University Press,
20109.

M. Agenis-Nevers et al., "An empirical estimation for time and memory algorithm
complexities: newly developed R package,” Multimedia Tools and Applications, vol. 80, no.
2, pp. 2997-3015, 2021/01/01 2021.

S. Phalke et al., "Big-O Time Complexity Analysis Of Algorithm," presented at the 2022
International Conference on Signal and Information Processing (IConSIP), Pune, India, 2022.
F. Dedov, The Bible of Algorithms and Data Structures: A Complex Subject Simply Explained.
2020.

DOI: http://dx.doi.org/10.25098/8.1.30

@O0

209

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.30
https://ssrn.com/abstract=3415957
http://dx.doi.org/10.2139/ssrn.3415957

