The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

/ Prevent the SQL Injection base on Session using the static ID of retrieving the URL \

Brzu T. Mohammed?, Ardallan H. Awlla2, Sherko H. Murad?, Hawar H. Yaba*

134 Computer Science Department, Kurdistan Technical Institute, Sulaimani, Iraq
2Department of Computer Science, Cihan University -Sulaimaniya, Sulaymaniya, Iraq

Email: brzu.tahir@kti.edu.iq?, ardalana.husain@sulicihan.edu.krd?,
sherko.murad@kti.edu.ig®, hawar.yaba@ kti.edu.ig* /

Abstract:

Today, the rise in cyber threats has underscored the vulnerability of web applications, making
website security a continuous challenge. Structured Query Language (SQL) injection attacks are
among the top ten security vulnerabilities recognized by the Open Web Application Security Project
(OWASP). Structured Query Language injection is still the most typical vulnerability and the most
critical security threat due to the diversity of forms and dramatic changes that it could lead to,
including financial losses, data leaks, and serious database corruption that could paralyze a site. One
vulnerability in a web application is sending sensitive data through the Uniform Resource Locator
(URL) query string. Therefore, the Uniform Resource Locator query string can be a trap for
Structured Query Language injection attacks to steal user data. This paper proposes an solution based
on a session using the static identifier of retrieving the Uniform Resource Locator to prevent
Structured Query Language injection vulnerabilities.

Keywords: SQL injection, SQL injection attack, Query parameters, Session, Database Security
rudlall
25 | jatuse Gand adl gall el Jaay Laa ey sll o) Conaza eaia 5 43 g SV Cilagagdl) 3 saly 30 il ¢l
JI 5 Y (OWASP) da sidall (gl cilidas cpal daliia gy o yins dyial <l 2 ydic aal e 32305 SQL injection cileaa
Sy A Al all ¢l ) s JSEY) £ 058 a5y shad SV 1Y) gl 5 & 0 <Y1 5,230 s SQL Injection
sl (gan) ad sall Jiiy of (S A dadd) i) ae ] 8 Cali g ecliball G i s ALl ilaaldl elld 8 Lay clgl) (g5 0
ol oS «elldl Uniform Resource Locator (URL) Query String e dsbuall bl Jus ) o sl (gukai b
il e ading Sla = 5 Cndl 138 (ppa2aadl) il 43 50l SQL Injection <lesel id URL Query String o555
.SQL Injection &l ja% aid session e URL gl i <l Cojae

) sac B el cdadal) ¢ Main¥) Clales <SQL s o saa «(SQL s :Aalidal) cilalsl)

DOI: http://dx.doi.org/10.25098/8.1.32

219

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/8.1.32
mailto:ardalana.husain@sulicihan.edu.krd2

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

1458

c

S e (il 055 )50 5 e ecilaed L (5 (SR Ay (5 31 5Y (LS4 5 I 4ot (g i) 3 et
alals (5 9l RS ) (AN AS So s S iedd 4y ) 5Y 00 41 4S0S4, SQL Injection (i Lal e s (SAglads 4l
Sl (sadis mn cpyinaa 5 Ol G ish <oy SQL Injection .o st sl s (OWASP) o5l S iy (s4ali
(RS 33 ¢l 1 (ALKl ) (i) g4l ¢ 3 Altin il g 4S (1o 5 & USSR 5 a5 38 )30l (5 a4 0 il
URL Query » s sl Uniform Resource Locator (URL) Query String (453, 4 4ilSe jlsivaa 4y Ll § 5o )b
Dy @l e jla 4o sl 33 65 pdd O atia 84y 53 w30 3 SQL Injection (o5 s 5 4las 4ty s sea String
A 53 %0 K3, 3 Session w4y 4 URL wesii R o5 51 Catindsed 58ia (SO Al Sliia Sy 4 Cudy <len
.SQL Injection S ) s¥

1. Introduction

Today's technology-driven world heavily relies on website services for a variety of activities, such
as online shopping, banking, and socializing. However, websites that use databases to store sensitive
information [1], such as financial data, biometric data, and passwords, are prime targets for hackers

12].

SQL injection attacks are a significant internet security threat. In 2017, a Russian hacker named
"Rasputin™ exploited this vulnerability to access data from 60+ institutions in the United Kingdom
and the United States, as confirmed by the Federal Bureau of Investigation (FBI) and the Department
of Homeland Security (DHS). Similarly, in 2018, the Cisco Prime License Manager suffered from a
SQL injection flaw, enabling attackers to manipulate database information. These incidents highlight
the widespread impact and serious consequences of SQL injection vulnerabilities.

Despite ongoing efforts to enhance internet security, the dangers to the internet persist and escalate
due to the ever-growing global population of internet users [3].

As per OWASP, a SQL injection attack occurs by injecting a SQL query through client input data
into a program. Successfully executing this attack allows access to sensitive database information,
enabling actions like data insertion, modification, and deletion. Additionally, it grants control over
database management tasks, such as shutting down the database management system and restoring
the contents of certain files that exist in the database management file system Fig.1.

In practice, many database websites face the threat of SQL injection attacks because regular users
and SQL injection attacks are not separated from each other when accessing a system. Attackers can
execute SQL injections conveniently through query strings or web forms, making their actions harder
to detect. Despite the existing web application firewall's reliance on feature matching algorithms, it
may fall short in safeguarding against all SQL injection variants.

Developers commonly utilize the URL query string as a primary means to transmit data across
web application pages. Unfortunately, some developers inadvertently send sensitive information
through these URLs, inadvertently creating vulnerabilities that attackers exploit through SQL
injection techniques.

DOI: http://dx.doi.org/10.25098/8.1.32
@O0

220

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)



http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

To prevent SQL injection attacks, it is crucial for website developers to follow secure coding
practices, such as using parameterized queries, input validation, and proper error handling. While
web application firewalls can provide some protection, they are not foolproof and may not catch all
types of attacks. This paper suggests an approach: substituting the query string with a session-based
mechanism as a preventive measure against SQL injection attacks. This method aims to bolster
security by altering the way data is handled and transmitted within sessions, potentially mitigating
vulnerabilities posed by query strings susceptible to exploitation.

-

1. Hacker identifies
vulnerable, SQL-
driven website &

injects malicious SQL
query via input data.

Username

Password

WEBSITE

SQL Injection Attack (SQL.i)

2. Malicious SQL
query is validated &
command is
executed by
database.

~

©/' INPUT FIELDS @&k

3. Hacker is granted access

to view and alter records or

potentially act as database
administrator.

“ (3)
HACKER DATABASE
\ J

Fig.1. SQL-injection-attack

2. Literature review

In Tang, et al. [4] SQL injection a popular web attack, is a difficult problem for network security,
that has resulted in annual financial losses of millions of dollars in addition the disclosure of a
considerable quantity of users' personal information. This research proposed a high accuracy SQL
injection detection solution based on neural network, Consequently, this paper's security achievement
is 99.9 percent. Li, et al [5] research identifying SQL injection in the field of network security is a
challenge problem, while traditional machine learning-based methods are difficult to handle multiple
features and redundant features, whereas deep learning methods contain multiple hyper-parameters
and are prone to over-fitting. As a result, this paper proposed an adaptive deep forest model-based
SQL injection detection approach, this research compares the suggested strategy to traditional
machine learning techniques in terms of accuracy, precision, recall, and fl1-score. The outcomes
demonstrate that the strategy was more effective.

Hasan, et.al. [6] extracted a number of features from SQL query and analyzed them to see if they
are injected with harmful commands. The suggested system sits between both the database
application and the database management system, examining the flow of queries and determining
whether or not they should be passed to the database.

The article evaluated the performance of 23 various classifiers. The top five models based on the
accuracy are chosen from among them to build the suggested system. The suggested method has been

DOI: http://dx.doi.org/10.25098/8.1.32

221

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

thoroughly evaluated, and the findings show that Ensemble Boosted and Bagged Trees classifiers are
the most accurate with 93.8 percent, the results show that the approach is successful with 99,23%

Xie, et.al. [7] Generally matching is the most common method for detecting SQL injection. This
kind of regular technique has a high rate of detection and accuracy, but it is incapable of detecting
new threats. It is certain that new bypass techniques will came out to escape rules such as URL multi-
encoding. This paper proposed Elastic-Pooling CNN which is automatically determines SQL
Injection characteristics and that makes it Identifies SQL injection in web applications efficiently, the
proposed method has a 99.9320% accuracy rate. It can detect new threats and is more difficult to
defeat because of the irregular matching features. Alenezi, et.al. [8] provided a comprehensive
overview of existing methods for preventing SQL injection threat. This study demonstrated that there
is no one solution that can fully guard against SQL injection attacks; consequently, more research is
necessary to combine several static and runtime techniques to achieve the best possible security with
the least amount of computational power.

Abikoye, et.al. [9] The Knuth-Morris-Pratt clustering algorithm is used to identify and prevent
certain threats. for the purpose of detect such malicious code, the technique was used to compare the
user's input string with the stored pattern of the injection string. The PHP scripting language and the
Apache XAMPP Server were used in the implementation. Various testing cases of SQL injection,
cross-site scripting (XSS), and encoded injection attacks were used to assess the technique's security.
The test results demonstrated that the technique was capable of detecting and preventing attacks,
logging the attack item in the database, blocking a system using its Mac Address to thwart subsequent
assaults, and sending a blocked message.

Jang, et.al.[10] proposed code generation method for detecting the embedded SQL injection
vulnerability in the C/C++ host programming language. The suggested technique has the advantage
of being beneficial in increasing software security monitoring, allowing us to design successful
remediation methods to ensure security applications and reduce errors. Furthermore, this paper
methodology demonstrated that successful retrofitting strategies can be designed to provide security
in legacy applications while also removing well-known attackers. In addition, this paper offered a
simple case study to demonstrate how SQL injection may be detected in embedded SQL.

Falor.et al. [11] investigated the various strategies for detecting and blocking SQL injection
attacks. All sorts of SQL.i attack queries, and also queries used to target specific databases, were
included in a systematic dataset. Then they analyzed and compared the performance of five various
classification models. They discovered that CNN has the best outcomes.

According to Nanhay, et.al.[12] there were a few ways to prevent SQL injection, including
minimizing privileges, implementing consistent coding standards, and SQL server firewalling.
Decreasing privileges means prioritizing security, and appropriate steps must be taken during the
development stage. Implementing consistent coding standards requires developers to establish some
coding policies to ensure that input validations checks are performed on the server, making it more
secure. SQL firewalls are necessary to ensure that only trusted clients can be contacted. The firewall
should reject all untrusted traffic.

DOI: http://dx.doi.org/10.25098/8.1.32
@O0

222

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)



http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

In Vamshi, et.al [13] there were three prevention methodologies identified the first method is referred
to as processing inputs. SQL injection is carried out using keywords such as 'FROM', 'WHERE', and
'SELECT". This problem can be solved if the keywords are not accepted in the input fields. The second
method is to manage permissions so that only people with database authorization can access the data.

In Krit, et.al. [14,] they discussed the vulnerability of SQL injection and proposed a framework
known as "PhpMinerl" for SQL injection. In addition, a novel method for detecting SQL injection
attacks based on removing the SQL query attributes values is presented. They had devised a method
for removing SQL query attributes. Nonetheless, before detecting the SQL injection, this method
cannot justify the SQL syntax. Furthermore, this paper discusses Microsoft Azure Machine Language,
a cloud-based predictive service that offers fully managed model predictive analytics and predictive
models.

In Raja, et.al [15] the DUD approach was used to detect SQL injection. The DUD approach is a
post-processing approach that is based on query classification. This approach is entirely dependent
on the user, who must be defined prior to the algorithm's execution. This DUD approach is then
improved by comparing the run time of SQL statements with the sanitizers to verify the attacks.

In Rhythm, et.al [16] are discussed more SQL injection prevention techniques, such as black box
testing, Black box testing improves the testing system that has been infiltrated by the use of machine
learning approaches.

3. Methodology

Table 1. Qualitative assessment of the relative risk levels.

Threat Potential Impact Risk Level (0-100%)
SQL Injection Unauthorized data access and manipulation | 80
Cross-Site Scripting Theft of session data, disclosure of data 60
Cross-Site Request Forgery | Unauthorized actions on behalf of users 50
Data Breach Unauthorized access to sensitive data 90
Phishing Attacks Disclosure of login credentials 60
Man-in-the-Middle Attacks | Eavesdropping on sensitive data 50
Malware Attacks Theft of sensitive information, disruption | 85

According to OWASP the table 1. Presents a qualitative assessment of the relative risk levels
associated with various security threats. Each threat is evaluated based on its potential impact and
assigned a risk level on a scale from 0% to 100%, where higher percentages indicate a higher
perceived risk. The risks are characterized in terms of potential consequences, such as unauthorized
data access, session theft, and unauthorized actions.

While these risk levels are subjective and illustrative, they provide a comparative perspective on
the potential severity of each threat. the risk level for SQL Injection is given as 80%. This indicates
a relatively high perceived risk associated with SQL Injection compared to the other threats listed in
the table.

DOI: http://dx.doi.org/10.25098/8.1.32
@O0

223

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

3.1. Query String

A query string is a part of a URL that contains data used by web applications to interact with
servers. It usually follows a question mark (?) in the URL and consists of key-value pairs separated
by ampersands (&). For example, in the URL "https://example.com/search?q=hello&page=1":

e The query string starts after the question mark?
e qg=hello is a key-value pair where q is the key and hello is the associated value.
e page=1 is another key-value pair.

Query strings often facilitate passing information between different pages on a website. They can
contain various types of data, such as search terms, user preferences, session identifiers, and more.
However, sensitive information should not be included in query strings as they are visible in the URL
and can potentially be intercepted or exposed.

3.2. Session

Session management in web applications is crucial for maintaining user authentication and
tracking their activity. session rely on HTTP protocol [17], as HTTP is stateless, it doesn't retain user
data between requests. To overcome this, servers generate unique session IDs for each user, which
are transmitted between the client's browser and the server. These IDs are stored by the server and
serve as identifiers for individual user sessions [18]. There are three primary methods to maintain
sessions:

e Cookies,
e HTML hidden form fields, and
e URL arguments.

For instance, when a user interacts with a web application, such as clicking a URL link, a URL
query string is formed. This query string contains parameters that request specific information from
the server. The server uses these parameters to retrieve and provide the requested data, allowing the
web application to maintain user sessions and serve information based on these parameters Fig.3.

Send HTTPS Query String Request

F 3

Respond HTTPS Session String

Y

—

Server Client

Fig.3. Client and server side

DOI: http://dx.doi.org/10.25098/8.1.32
@O0

224

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)



http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

When a query string is used to fetch data from a database, hackers can exploit this by manipulating
the query string value (ID) to launch attacks. To showcase this vulnerability, a website was developed
and hosted on a local server under the domain http://localhost/news/example.php?id=1. Testing this
website for susceptibility to SQL injection attacks using the SQL Injection Map tool. It demonstrated
that the website is prone to such attacks, as depicted in Fig.4. This underscores the importance of
implementing robust security measures to safeguard against SQL injection threats.

$ python sqlmap.py -u "http://localhost/news/example.php?id=1" --tables

o ___ {1.6.8.4#dev}
S
1 Y |
I_IV... |_|  https://sqlmap.or

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to obey all applicabl
e local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused by this program

[*] starting @ 12:15:32 /2022-09-07/
] checking if the target is protected by some kind of WAF/IPS
] testing if the target URL content is stable
] target URL content is stable
] testing if GET parameter 'id' is dynamic

rameter 'id' might be injectable

[ ] testing 'AND boolean-based blind - WHERE or HAVING clause'

[INFO] GET parameter 'id' appears to be 'AND boolean-based blind - WHERE or HAVING clause' injectable
[12:15:33] [INFO] heuristic (extended) test shows that the back-end DBMS could be 'MySQL
it looks like the back-end DBMS is 'MySQL'. Do you want to skip test payloads specific for other DBMSes? [Y/n] n

Fig.4. SQL Map Injection Attacking Queries

To addressing this security vulnerability involved a two-step approach. Initially, the query 1D was
extracted from the URL query string before retrieving data from the server's database. This step aimed
to decouple direct database access from the ID provided in the URL, mitigating potential
vulnerabilities.

Second, the extracted ID was replaced with a predefined value, ensuring database queries relied
on a controlled and secure identifier.

The implementation of these steps, detailed in pseudocode and depicted in Fig. 5, aimed to
showcase a practical solution to mitigate the risk of SQL injection by securing the query string
handling process.

DOI: http://dx.doi.org/10.25098/8.1.32
@O0

225

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

initialize array characters(i,j);
initialize string querystring = URL;
initialize string getID = null;

if (Request.queryString("ID") != null)

Begin
getID = Request.queryString("ID");
getID = characters{1l, j);
session[getID];

End

Else

Begin
Return error page 464;

End

Fig.5. Proposed Pseudocode
4. Discussion and Results

The study used the SQL map tool to reattempt an attack on the prototype website after the
implementation of suggested security measures. The subsequent reattack revealed the website's
resilience, effectively proving that the suggested approach successfully safeguards against SQL
injection hacking. Figure 6 illustrates that upon integrating this solution into the web application, the
parameters become indiscernible, rendering it impossible for hackers to access any data.

$ python sqlmap.py -u "http://localhost/news/example.php?department=computer" --tables

{1.6.8.4#dev}

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to obey all applicabl
e local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused by this program

[*] starting @ 12:28:53 /2022-09-07/

[L 3 WFO] testing connection to the target URL
[1 1 checking if the target is protected by some kind of WAF/IPS
[1 ] testing if the target URL content is stable
[1 ] target URL content is stable
] testing if GET parameter 'department' is dynamic

4] [WARNING] heuristic (basic) test shows that GET parameter 'department’ might not be injectable

testing 'AND boolean-based blind - WHERE or HAVING clause'
testing 'Boolean-based blind - Parameter replace (original value)'
testing 'MySQL >= 5.1 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (EXTRACTVALUE)'
testing 'PostgreSQL AND error-based - WHERE or HAVING clause'
testing 'Microsoft SQL Server/Sybase AND error-based - WHERE or HAVING clause (IN)'
testing 'Oracle AND error-based - WHERE or HAVING clause (XMLType)'
testing 'Generic inline queries’
testing 'PostgreSQL > 8.1 stacked queries (comment)®
testing 'Microsoft SQL Server/Sybase stacked queries (comment)'
testing 'Oracle stacked queries (DBMS_PIPE.RECEIVE_MESSAGE - comment)'
testing 'MySQL >= 5.0.12 AND time-based blind (query SLEEP)'
testing 'PostgresqL > 8.1 AND time-based blind*
testing 'Microsoft SQL Server/Sybase time-based blind (IF)'
2 testing 'Oracle AND time-based blind®
it is recommended to perform only basic UNION tests if there is not at least one other (potential) technique found. Do you want to reduce the number of reques
ts? [Y/n]

Fig.5. SQL Map Injection Attacking Queries

DOI: http://dx.doi.org/10.25098/8.1.32
@O0

226

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)



http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Fig. 6 visually illustrates the substitution of the URL query string's ID with a highly secure alternative,
not stored in the server's database. This prevents SQL injection attacks. Even if hackers acquire this
secure ID, it won't access any database info via the URL query string. The absence of this static ID
in the database removes the vulnerability of the URL query string to attacks.

o [ http://localhost/news/example._.php?id=1 “ Submit

{ Take out the URL query string ID which is 1 for for this example then,
e change it to a preferable ID which is news.

Null conter

e http://localhost/news/example_php?ID=news

Fig.6. Result of detection for test
5. Conclusion

Developers commonly employ URL query strings to transmit sensitive parameters for database
data retrieval in web applications. However, storing parameters directly in the database poses a
security vulnerability. Hackers exploit this vulnerability through SQL injection attacks, extracting
information from the database.

This research introduces a preventive approach by converting the URL query string value into a
more secure form. This secure query string serves as a session parameter, distinct from direct storage
in the database. Subsequently, this session parameter facilitates data retrieval from the web
application database. With this method, hackers are unable to access database content because the
highly secure parameter isn't stored in the database; it solely functions as a key for the session from
the query string.

DOI: http://dx.doi.org/10.25098/8.1.32

227

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

References

[1] M. C. Jaeger, M. C. Vieira, and C. A. Tacla, "Web services standards: An overview," Journal of
Information Systems Engineering & Management, vol. 3, no. 3, pp. 1-11, 2018.

[2] Zhiquan Lai, Yongjun Shen and Guidong Zhang, "A security risk assessment method of website
based on threat analysis combined with AHP and entropy weight,” 2016 7th IEEE International
Conference on Software Engineering and Service Science (ICSESS), 2016, pp. 481-484, doi:
10.1109/ICSESS.2016.7883113.

[3]Yin, C., Awlla, A. H., Yin, Z., & Wang, J. 2015.Botnet detection based on genetic neural
network. International Journal of Security and Its Applications, 9(11): 97-104.

[4] Peng Tang, Weidong Qiu, Zheng Huang, Huijuan Lian, Guozhen Liu, Detection of SQL injection
based on artificial neural network, Knowledge-Based Systems, Volume 190, 2020, 105528.

[5] Q. Li, W. Li, J. Wang and M. Cheng, "A SQL Injection Detection Method Based on Adaptive
Deep Forest,” in IEEE Access, vol. 7, pp. 145385-145394, 2019, doi:
10.1109/ACCESS.2019.2944951.

[6] M. Hasan, Z. Balbahaith and M. Tarique, "Detection of SQL Injection Attacks: A Machine
Learning Approach,” 2019 International Conference on Electrical and Computing Technologies
and Applications (ICECTA), 2019, pp. 1-6, doi: 10.1109/ICECTA48151.2019.8959617.

[7] X. Xie, C. Ren, Y. Fu, J. Xu and J. Guo, "SQL Injection Detection for Web Applications Based
on Elastic-Pooling CNN," in IEEE Access, vol. 7, pp. 151475-151481, 2019, doi:
10.1109/ACCESS.2019.2947527.

[8] Mamdouh Alenezi, Muhammad Nadeem, Raja Asif, "SQL injection attacks countermeasures
assessments”, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 21, No.
2, February 2021, pp. 1121-1131.

[9] Abikoye, O.C., Abubakar, A., Dokoro, A.H. et al. A novel technique to prevent SQL injection
and cross-site scripting attacks using Knuth-Morris-Pratt string match algorithm. EURASIP J. on
Info. Security 2020, 14 (2020).

[10] JANG Young-Su. Detection of SQL Injection Vulnerability in Embedded SQL. IEICE
Transactions on Information and Systems, IEICE TRANS. INF. & SYST., VOL.E103-D, NO.5
MAY 2020.

[11] Falor, A., Hirani, M., Vedant, H., Mehta, P., Krishnan, D. (2022). A Deep Learning Approach
for Detection of SQL Injection Attacks Using Convolutional Neural Networks. In: Gupta, D.,
Polkowski, Z., Khanna, A., Bhattacharyya, S., Castillo, O. (eds) Proceedings of Data Analytics
and Management. Lecture Notes on Data Engineering and Communications Technologies, vol
91. Springer, Singapore.

[12] S. Nanhay, D. Mohit, R.S. Raw, and K. Suresh, “SQL Injection: Types, Methodology, Attack
Queries and Prevention”, in 3rd International Conference on Computing for Sustainable Global
Development (INDIACom), 2016, p. 2872 — 2876.

[13] K.G. Vamshi, V. Trinadh, S. Soundabaya, and A. Omar, “Advanced Automated SQL Injection
Attacks and Defensive Mechanisms”, in Annual Connecticut Conference on Industrial
Electronics, Technology & Automation (CT-IETA), 2016, p. 1-6.

DOI: http://dx.doi.org/10.25098/8.1.32
@O0

228

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)



http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University — Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

[14] K. Krit and S. Chitsutha, “Machine Learning for SQL Injection Prevention on Server- Side
Scripting”, in International Computer Science and Engineering Conference (ICSEC), 2016, p. 1-
6.

[15] P.K. Raja and Z. Bing, “Enhanced Approach to Detection of SQL Injection Attack”, in 15th
IEEE International Conference on Machine Learning and Applications (ICMLA), 2016, p. 466 —
469.

[16] D. Rhythm and G. Himanshu, “SQL Filtering: An Effective Technique to prevent SQL Injection
Attack”, in International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO), 2016, p. 312 — 317.

[17] Kolsek, Mitja. "Session fixation vulnerability in web-based applications”, "Acros Security"
Available online: http://www.acrossecurity.com/papers/session_fixation.pdf,2002 (Accessed 14
Sep 2022).

[18] IETF, RFC2616: Hypertext Transfer Protocol -- HTTP/1.1, Available online:

https://tools.ietf.org/html/rfc2616 (Accessed 14 Sep 2022).

[19] OWASP, Session Management Cheat Sheet, Available online:
https://github.com/OWASP/CheatSheetSeries/blob/mast
er/cheatsheets/Session_Management_Cheat_Sheet.md (Accessed 14 Sep 2022).

DOI: http://dx.doi.org/10.25098/8.1.32
@O0

229

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)


http://dx.doi.org/10.25098/8.1.32

