
 The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.32

219

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Abstract:

Today, the rise in cyber threats has underscored the vulnerability of web applications, making

website security a continuous challenge. Structured Query Language (SQL) injection attacks are

among the top ten security vulnerabilities recognized by the Open Web Application Security Project

(OWASP). Structured Query Language injection is still the most typical vulnerability and the most

critical security threat due to the diversity of forms and dramatic changes that it could lead to,

including financial losses, data leaks, and serious database corruption that could paralyze a site. One

vulnerability in a web application is sending sensitive data through the Uniform Resource Locator

(URL) query string. Therefore, the Uniform Resource Locator query string can be a trap for

Structured Query Language injection attacks to steal user data. This paper proposes an solution based

on a session using the static identifier of retrieving the Uniform Resource Locator to prevent

Structured Query Language injection vulnerabilities.

Keywords: SQL injection, SQL injection attack, Query parameters, Session, Database Security

 الملخص:

تعُد التهديدات الإلكترونية توضح ضعف التطبيقات الويب، مما يجعل أمان المواقع تحديًا مستمرًا. اليوم، أصبحت الزيادة في

لا تزال OWASP)واحدة من أهم عشر ثغرات أمنية تعترف بها منظمة أمن تطبيقات الويب المفتوحة) SQL injectionهجمات

SQL Injection هي الثغرة الأكثر شيوعًا والتهديد الأمني الأكثر خطورة بسبب تنوع الأشكال والتغييرات الدراماتيكية التي يمكن

أن تؤدي إليها، بما في ذلك الخسائر المالية، وتسرب البيانات، وتلف قواعد البيانات الخطير الذي يمكن أن يشل الموقع. إحدى الثغرات

لذلك، يمكن أن Uniform Resource Locator (URL) Query Stringبيانات الحساسة عبر في تطبيق الويب هي إرسال ال

تقترح حلاً يعتمد على استخدام لبحثلسرقة بيانات المستخدمين.هذا ا SQL Injectionفخًا لهجمات URL Query Stringتكون

 SQL Injection.لمنع ثغرات sessionعبر URLمعرف ثابت لاسترجاع

 .، معلمات الاستعلام، الجلسة، أمان قاعدة البياناتSQL، هجوم حقن SQLحقن :الكلمات المفتاحية

Prevent the SQL Injection base on Session using the static ID of retrieving the URL

4, Hawar H. Yaba3, Sherko H. Murad2, Ardallan H. Awlla1Brzu T. Mohammed

1,3,4 Computer Science Department, Kurdistan Technical Institute, Sulaimani, Iraq
2Department of Computer Science, Cihan University -Sulaimaniya, Sulaymaniya, Iraq

Email: brzu.tahir@kti.edu.iq1, ardalana.husain@sulicihan.edu.krd2,

sherko.murad@kti.edu.iq3, hawar.yaba@ kti.edu.iq4

http://dx.doi.org/10.25098/8.1.32
mailto:ardalana.husain@sulicihan.edu.krd2

The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.32DOI:

220
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

 : پوختە

ئەمڕۆ زيادبوونی هەڕەشە ئەليکترۆنييەکان لاوازی بەرنامەکانی وێب نيشان دەدات، ئەمەش وايکردووە ئاسايشی ماڵپەڕەکان

يەکێکە لە دە لاوازييە ئەمنييەکانی سەرەکی کە لەلايەن ڕێکخراوی ئاسايشی Injection SQLببێتە تەحەدايەکی بەردەوام. هێرشی

(کراوە وێبی ئاسايش Injection SQLناسراوەتەوە. OWASP)بەرنامەی هەڕەشەی جدديترين و لاوازی باوترين وەك

دەمێنێتەوە بەهۆی جۆراوجۆری فۆڕم و گۆڕانکارييە گەورەکان کە دەتوانێت ببێتە هۆی، لەوانەش زيانەکانی دارايی، دزەپێکردنی

ج بکات. يەکێك لە لاوازييەکانی ناو بەرنامەی وێب زانياری و خراپبوونی جددی بنکەی زانيارييەکان کە دەتوانێت ماڵپەڕەکە ئيفلي

 URL Queryلە بەرئەوە Query String Uniform Resource Locator (URL)ناردنی زانيارييە هەستيارەکانە لە ڕێگەی

String دەتوانێت ببێتە تەڵە بۆ هێرشیSQL Injection بۆ دزينی زانياری بەکارهێنەران ئەم توێژينەوەيە چارەسەرێك پێشنيار

وەرگرتنەوەی بۆ دەبەستێت جێگير ناسێنەرێکی بەکارهێنانی بە پشت ڕیگەی URLدەکات لە Sessionلە ڕێگريکردن بۆ

 SQL Injection.لاوازييەکانی

1. Introduction

Today's technology-driven world heavily relies on website services for a variety of activities, such

as online shopping, banking, and socializing. However, websites that use databases to store sensitive

information [1], such as financial data, biometric data, and passwords, are prime targets for hackers

[2].

SQL injection attacks are a significant internet security threat. In 2017, a Russian hacker named

"Rasputin" exploited this vulnerability to access data from 60+ institutions in the United Kingdom

and the United States, as confirmed by the Federal Bureau of Investigation (FBI) and the Department

of Homeland Security (DHS). Similarly, in 2018, the Cisco Prime License Manager suffered from a

SQL injection flaw, enabling attackers to manipulate database information. These incidents highlight

the widespread impact and serious consequences of SQL injection vulnerabilities.

Despite ongoing efforts to enhance internet security, the dangers to the internet persist and escalate

due to the ever-growing global population of internet users [3].

As per OWASP, a SQL injection attack occurs by injecting a SQL query through client input data

into a program. Successfully executing this attack allows access to sensitive database information,

enabling actions like data insertion, modification, and deletion. Additionally, it grants control over

database management tasks, such as shutting down the database management system and restoring

the contents of certain files that exist in the database management file system Fig.1.

In practice, many database websites face the threat of SQL injection attacks because regular users

and SQL injection attacks are not separated from each other when accessing a system. Attackers can

execute SQL injections conveniently through query strings or web forms, making their actions harder

to detect. Despite the existing web application firewall's reliance on feature matching algorithms, it

may fall short in safeguarding against all SQL injection variants.

Developers commonly utilize the URL query string as a primary means to transmit data across

web application pages. Unfortunately, some developers inadvertently send sensitive information

through these URLs, inadvertently creating vulnerabilities that attackers exploit through SQL

injection techniques.

http://dx.doi.org/10.25098/8.1.32

 The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.32

221

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

To prevent SQL injection attacks, it is crucial for website developers to follow secure coding

practices, such as using parameterized queries, input validation, and proper error handling. While

web application firewalls can provide some protection, they are not foolproof and may not catch all

types of attacks. This paper suggests an approach: substituting the query string with a session-based

mechanism as a preventive measure against SQL injection attacks. This method aims to bolster

security by altering the way data is handled and transmitted within sessions, potentially mitigating

vulnerabilities posed by query strings susceptible to exploitation.

Fig.1. SQL-injection-attack

2. Literature review

In Tang, et al. [4] SQL injection a popular web attack, is a difficult problem for network security,

that has resulted in annual financial losses of millions of dollars in addition the disclosure of a

considerable quantity of users' personal information. This research proposed a high accuracy SQL

injection detection solution based on neural network, Consequently, this paper's security achievement

is 99.9 percent. Li, et al [5] research identifying SQL injection in the field of network security is a

challenge problem, while traditional machine learning-based methods are difficult to handle multiple

features and redundant features, whereas deep learning methods contain multiple hyper-parameters

and are prone to over-fitting. As a result, this paper proposed an adaptive deep forest model-based

SQL injection detection approach, this research compares the suggested strategy to traditional

machine learning techniques in terms of accuracy, precision, recall, and f1-score. The outcomes

demonstrate that the strategy was more effective.

Hasan, et.al. [6] extracted a number of features from SQL query and analyzed them to see if they

are injected with harmful commands. The suggested system sits between both the database

application and the database management system, examining the flow of queries and determining

whether or not they should be passed to the database.

The article evaluated the performance of 23 various classifiers. The top five models based on the

accuracy are chosen from among them to build the suggested system. The suggested method has been

http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.32DOI:

222
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

thoroughly evaluated, and the findings show that Ensemble Boosted and Bagged Trees classifiers are

the most accurate with 93.8 percent, the results show that the approach is successful with 99,23%

Xie, et.al. [7] Generally matching is the most common method for detecting SQL injection. This

kind of regular technique has a high rate of detection and accuracy, but it is incapable of detecting

new threats. It is certain that new bypass techniques will came out to escape rules such as URL multi-

encoding. This paper proposed Elastic-Pooling CNN which is automatically determines SQL

Injection characteristics and that makes it Identifies SQL injection in web applications efficiently, the

proposed method has a 99.9320% accuracy rate. It can detect new threats and is more difficult to

defeat because of the irregular matching features. Alenezi, et.al. [8] provided a comprehensive

overview of existing methods for preventing SQL injection threat. This study demonstrated that there

is no one solution that can fully guard against SQL injection attacks; consequently, more research is

necessary to combine several static and runtime techniques to achieve the best possible security with

the least amount of computational power.

Abikoye, et.al. [9] The Knuth-Morris-Pratt clustering algorithm is used to identify and prevent

certain threats. for the purpose of detect such malicious code, the technique was used to compare the

user's input string with the stored pattern of the injection string. The PHP scripting language and the

Apache XAMPP Server were used in the implementation. Various testing cases of SQL injection,

cross-site scripting (XSS), and encoded injection attacks were used to assess the technique's security.

The test results demonstrated that the technique was capable of detecting and preventing attacks,

logging the attack item in the database, blocking a system using its Mac Address to thwart subsequent

assaults, and sending a blocked message.

Jang, et.al.[10] proposed code generation method for detecting the embedded SQL injection

vulnerability in the C/C++ host programming language. The suggested technique has the advantage

of being beneficial in increasing software security monitoring, allowing us to design successful

remediation methods to ensure security applications and reduce errors. Furthermore, this paper

methodology demonstrated that successful retrofitting strategies can be designed to provide security

in legacy applications while also removing well-known attackers. In addition, this paper offered a

simple case study to demonstrate how SQL injection may be detected in embedded SQL.

Falor.et al. [11] investigated the various strategies for detecting and blocking SQL injection

attacks. All sorts of SQLi attack queries, and also queries used to target specific databases, were

included in a systematic dataset. Then they analyzed and compared the performance of five various

classification models. They discovered that CNN has the best outcomes.

According to Nanhay, et.al.[12] there were a few ways to prevent SQL injection, including

minimizing privileges, implementing consistent coding standards, and SQL server firewalling.

Decreasing privileges means prioritizing security, and appropriate steps must be taken during the

development stage. Implementing consistent coding standards requires developers to establish some

coding policies to ensure that input validations checks are performed on the server, making it more

secure. SQL firewalls are necessary to ensure that only trusted clients can be contacted. The firewall

should reject all untrusted traffic.

http://dx.doi.org/10.25098/8.1.32

 The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.32

223

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

In Vamshi, et.al [13] there were three prevention methodologies identified the first method is referred

to as processing inputs. SQL injection is carried out using keywords such as 'FROM', 'WHERE', and

'SELECT'. This problem can be solved if the keywords are not accepted in the input fields. The second

method is to manage permissions so that only people with database authorization can access the data.

In Krit, et.al. [14,] they discussed the vulnerability of SQL injection and proposed a framework

known as "PhpMinerl" for SQL injection. In addition, a novel method for detecting SQL injection

attacks based on removing the SQL query attributes values is presented. They had devised a method

for removing SQL query attributes. Nonetheless, before detecting the SQL injection, this method

cannot justify the SQL syntax. Furthermore, this paper discusses Microsoft Azure Machine Language,

a cloud-based predictive service that offers fully managed model predictive analytics and predictive

models.

In Raja, et.al [15] the DUD approach was used to detect SQL injection. The DUD approach is a

post-processing approach that is based on query classification. This approach is entirely dependent

on the user, who must be defined prior to the algorithm's execution. This DUD approach is then

improved by comparing the run time of SQL statements with the sanitizers to verify the attacks.

In Rhythm, et.al [16] are discussed more SQL injection prevention techniques, such as black box

testing, Black box testing improves the testing system that has been infiltrated by the use of machine

learning approaches.

3. Methodology

Table 1. Qualitative assessment of the relative risk levels.

Threat Potential Impact Risk Level (0-100%)

SQL Injection Unauthorized data access and manipulation 80

Cross-Site Scripting Theft of session data, disclosure of data 60

Cross-Site Request Forgery Unauthorized actions on behalf of users 50

Data Breach Unauthorized access to sensitive data 90

Phishing Attacks Disclosure of login credentials 60

Man-in-the-Middle Attacks Eavesdropping on sensitive data 50

Malware Attacks Theft of sensitive information, disruption 85

According to OWASP the table 1. Presents a qualitative assessment of the relative risk levels

associated with various security threats. Each threat is evaluated based on its potential impact and

assigned a risk level on a scale from 0% to 100%, where higher percentages indicate a higher

perceived risk. The risks are characterized in terms of potential consequences, such as unauthorized

data access, session theft, and unauthorized actions.

 While these risk levels are subjective and illustrative, they provide a comparative perspective on

the potential severity of each threat. the risk level for SQL Injection is given as 80%. This indicates

a relatively high perceived risk associated with SQL Injection compared to the other threats listed in

the table.

http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.32DOI:

224
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

3.1. Query String

A query string is a part of a URL that contains data used by web applications to interact with

servers. It usually follows a question mark (?) in the URL and consists of key-value pairs separated

by ampersands (&). For example, in the URL "https://example.com/search?q=hello&page=1":

• The query string starts after the question mark?

• q=hello is a key-value pair where q is the key and hello is the associated value.

• page=1 is another key-value pair.

Query strings often facilitate passing information between different pages on a website. They can

contain various types of data, such as search terms, user preferences, session identifiers, and more.

However, sensitive information should not be included in query strings as they are visible in the URL

and can potentially be intercepted or exposed.

3.2. Session

Session management in web applications is crucial for maintaining user authentication and

tracking their activity. session rely on HTTP protocol [17], as HTTP is stateless, it doesn't retain user

data between requests. To overcome this, servers generate unique session IDs for each user, which

are transmitted between the client's browser and the server. These IDs are stored by the server and

serve as identifiers for individual user sessions [18]. There are three primary methods to maintain

sessions:

• Cookies,

• HTML hidden form fields, and

• URL arguments.

For instance, when a user interacts with a web application, such as clicking a URL link, a URL

query string is formed. This query string contains parameters that request specific information from

the server. The server uses these parameters to retrieve and provide the requested data, allowing the

web application to maintain user sessions and serve information based on these parameters Fig.3.

Fig.3. Client and server side

http://dx.doi.org/10.25098/8.1.32

 The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.32

225

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

When a query string is used to fetch data from a database, hackers can exploit this by manipulating

the query string value (ID) to launch attacks. To showcase this vulnerability, a website was developed

and hosted on a local server under the domain http://localhost/news/example.php?id=1. Testing this

website for susceptibility to SQL injection attacks using the SQL Injection Map tool. It demonstrated

that the website is prone to such attacks, as depicted in Fig.4. This underscores the importance of

implementing robust security measures to safeguard against SQL injection threats.

Fig.4. SQL Map Injection Attacking Queries

To addressing this security vulnerability involved a two-step approach. Initially, the query ID was

extracted from the URL query string before retrieving data from the server's database. This step aimed

to decouple direct database access from the ID provided in the URL, mitigating potential

vulnerabilities.

Second, the extracted ID was replaced with a predefined value, ensuring database queries relied

on a controlled and secure identifier.

The implementation of these steps, detailed in pseudocode and depicted in Fig. 5, aimed to

showcase a practical solution to mitigate the risk of SQL injection by securing the query string

handling process.

http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.32DOI:

226
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Fig.5. Proposed Pseudocode

4. Discussion and Results

The study used the SQL map tool to reattempt an attack on the prototype website after the

implementation of suggested security measures. The subsequent reattack revealed the website's

resilience, effectively proving that the suggested approach successfully safeguards against SQL

injection hacking. Figure 6 illustrates that upon integrating this solution into the web application, the

parameters become indiscernible, rendering it impossible for hackers to access any data.

Fig.5. SQL Map Injection Attacking Queries

http://dx.doi.org/10.25098/8.1.32

 The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.32

227

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Fig. 6 visually illustrates the substitution of the URL query string's ID with a highly secure alternative,

not stored in the server's database. This prevents SQL injection attacks. Even if hackers acquire this

secure ID, it won't access any database info via the URL query string. The absence of this static ID

in the database removes the vulnerability of the URL query string to attacks.

 Fig.6. Result of detection for test

5. Conclusion

Developers commonly employ URL query strings to transmit sensitive parameters for database

data retrieval in web applications. However, storing parameters directly in the database poses a

security vulnerability. Hackers exploit this vulnerability through SQL injection attacks, extracting

information from the database.

This research introduces a preventive approach by converting the URL query string value into a

more secure form. This secure query string serves as a session parameter, distinct from direct storage

in the database. Subsequently, this session parameter facilitates data retrieval from the web

application database. With this method, hackers are unable to access database content because the

highly secure parameter isn't stored in the database; it solely functions as a key for the session from

the query string.

http://dx.doi.org/10.25098/8.1.32

The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.32DOI:

228
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

References

[1] M. C. Jaeger, M. C. Vieira, and C. A. Tacla, "Web services standards: An overview," Journal of

Information Systems Engineering & Management, vol. 3, no. 3, pp. 1-11, 2018.

[2] Zhiquan Lai, Yongjun Shen and Guidong Zhang, "A security risk assessment method of website

based on threat analysis combined with AHP and entropy weight," 2016 7th IEEE International

Conference on Software Engineering and Service Science (ICSESS), 2016, pp. 481-484, doi:

10.1109/ICSESS.2016.7883113.

[3] Yin, C., Awlla, A. H., Yin, Z., & Wang, J. 2015.Botnet detection based on genetic neural

network. International Journal of Security and Its Applications, 9(11): 97-104.

[4] Peng Tang, Weidong Qiu, Zheng Huang, Huijuan Lian, Guozhen Liu, Detection of SQL injection

based on artificial neural network, Knowledge-Based Systems, Volume 190, 2020, 105528.

[5] Q. Li, W. Li, J. Wang and M. Cheng, "A SQL Injection Detection Method Based on Adaptive

Deep Forest," in IEEE Access, vol. 7, pp. 145385-145394, 2019, doi:

10.1109/ACCESS.2019.2944951.

[6] M. Hasan, Z. Balbahaith and M. Tarique, "Detection of SQL Injection Attacks: A Machine

Learning Approach," 2019 International Conference on Electrical and Computing Technologies

and Applications (ICECTA), 2019, pp. 1-6, doi: 10.1109/ICECTA48151.2019.8959617.

[7] X. Xie, C. Ren, Y. Fu, J. Xu and J. Guo, "SQL Injection Detection for Web Applications Based

on Elastic-Pooling CNN," in IEEE Access, vol. 7, pp. 151475-151481, 2019, doi:

10.1109/ACCESS.2019.2947527.

[8] Mamdouh Alenezi, Muhammad Nadeem, Raja Asif, "SQL injection attacks countermeasures

assessments", Indonesian Journal of Electrical Engineering and Computer Science, Vol. 21, No.

2, February 2021, pp. 1121-1131.

[9] Abikoye, O.C., Abubakar, A., Dokoro, A.H. et al. A novel technique to prevent SQL injection

and cross-site scripting attacks using Knuth-Morris-Pratt string match algorithm. EURASIP J. on

Info. Security 2020, 14 (2020).

[10] JANG Young-Su. Detection of SQL Injection Vulnerability in Embedded SQL. IEICE

Transactions on Information and Systems, IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5

MAY 2020.

[11] Falor, A., Hirani, M., Vedant, H., Mehta, P., Krishnan, D. (2022). A Deep Learning Approach

for Detection of SQL Injection Attacks Using Convolutional Neural Networks. In: Gupta, D.,

Polkowski, Z., Khanna, A., Bhattacharyya, S., Castillo, O. (eds) Proceedings of Data Analytics

and Management. Lecture Notes on Data Engineering and Communications Technologies, vol

91. Springer, Singapore.

 [12] S. Nanhay, D. Mohit, R.S. Raw, and K. Suresh, “SQL Injection: Types, Methodology, Attack

Queries and Prevention”, in 3rd International Conference on Computing for Sustainable Global

Development (INDIACom), 2016, p. 2872 – 2876.

[13] K.G. Vamshi, V. Trinadh, S. Soundabaya, and A. Omar, “Advanced Automated SQL Injection

Attacks and Defensive Mechanisms”, in Annual Connecticut Conference on Industrial

Electronics, Technology & Automation (CT-IETA), 2016, p. 1-6.

http://dx.doi.org/10.25098/8.1.32

 The Scientific Journal of Cihan University – Sulaimaniya PP: 219-229
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.32

229

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

[14] K. Krit and S. Chitsutha, “Machine Learning for SQL Injection Prevention on Server- Side

Scripting”, in International Computer Science and Engineering Conference (ICSEC), 2016, p. 1-

6.

[15] P.K. Raja and Z. Bing, “Enhanced Approach to Detection of SQL Injection Attack”, in 15th

IEEE International Conference on Machine Learning and Applications (ICMLA), 2016, p. 466 –

469.

[16] D. Rhythm and G. Himanshu, “SQL Filtering: An Effective Technique to prevent SQL Injection

Attack”, in International Conference on Reliability, Infocom Technologies and Optimization

(Trends and Future Directions) (ICRITO), 2016, p. 312 – 317.

[17] Kolšek, Mitja. "Session fixation vulnerability in web-based applications", "Acros Security"

 Available online: http://www.acrossecurity.com/papers/session_fixation.pdf,2002 (Accessed 14

Sep 2022).

[18] IETF, RFC2616: Hypertext Transfer Protocol -- HTTP/1.1, Available online:

 https://tools.ietf.org/html/rfc2616 (Accessed 14 Sep 2022).

[19] OWASP, Session Management Cheat Sheet, Available online:

https://github.com/OWASP/CheatSheetSeries/blob/mast

er/cheatsheets/Session_Management_Cheat_Sheet.md (Accessed 14 Sep 2022).

http://dx.doi.org/10.25098/8.1.32

