The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Generalize A* Algorithms to Solve Travel Salesman Problem \

Maha Sabah Saeed?, Shilan Abdullah Hassan?, Manal Ali Atiyah®

12Network Department, Computer Science Institute, Sulaimani Polytechnic University,
Sulaimani, Iraq

3Database Department, Computer Science Institute, Sulaimani Polytechnic University,
Sulaimani, Iraq

Email: maha.saeed@spu.edu.ig?, shilan.abdullah@spu.edu.ig?, manal.Ali@spu.edu.ig®

/

Generalize A* is a search algorithm that has widely been used in the pathfinding research group.
Its efficiency, simplicity, and modularity are often highlighted as its strengths compared to other
algorithms. Dijkstra algorithm is another type of A* but without using of heuristic function. These
algorithms were used previously to find the shortest path between two states (start and goal).

Abstract:

Travelling Salesman Problem (TSP) is one of the most common combinatorial optimization
problems. It comes in the categorization of NP-Hard problems. The solutions of TSP are not possible
using traditional algorithms. It is having many application branches like mathematics, computer
science, and engineering. TSP is designed to find the shortest path by visiting all instances of the
problem. This study makes an adaptation to the A* algorithm to work on TSP with the heuristic
function that tries to look for a better path which gives priority to nodes that are supposed to be better
than others and Dijkstra’s algorithm just explores all possible ways and compare between the two
algorithms for the same problem. The study result will help for future studies.

Keywords: A* algorithm, Dijkstra’s algorithm, travelling salesman problem (TSP), heuristic
function (HF).

rudlall

e Lealadind ahy Sy dne))l A (A AF BaSaall COKEAN e paal) Jad D) (a3 e (e Gand) e)l A s

Gilae ol pAll 45 Hlaa g3 8 LalaiS Leihaai g Lgihalun g LeSeldS jpad o Lo Wle | jluall e Sall de gona (A a5 (3l

o3 Caaddiul) se¥) Gy yae o IS Adda g aladi) (50 oSls A ¥ e Al £ 55 & Dijkstra i)l s gAY
(2]l 5 Al ik Cpn Jlse sl e siall il iy 5l 530

da NP-Hard JSbie carieai 8 b 12 sl alexiV) cpuatl) JSLE JiST (e 33a) 5 (TSP) Jsaial) adld) A 2as
S5 e g il S o Al g 5 5 Cpm el Lpd)) LS il e) 8l aladinly ASas e TSP Al
Sl S el pa) o Auall ods Jexd il maen 5500 DA e Gaob el Lo) siall TSP apenst 1 duigll
LY any o) Qb e e Eanl) Jlag A 5aY) il e o i3SI Aida g ae TSPl daall A * 3ua)53
Sad) G5kl ppen Dijkstra due sl i oS Loy ccingd)) Jsem sl s e e Jomil 0585 0 Gim jiaall go) snll
bl a5l e il el Al ol il Al il e 550 53 A jlaall 5 Caagl LI J e sl

(HF) 40l Y1 Ak ol ¢ (TSP) Jsaiall ald) A ¢ Dijkstra dse))sa ¢ * A dge)l i dgalidal) cilals))

DOI: http://dx.doi.org/10.25098/8.1.31
@O0

210

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31
mailto:maha.saeed@spu.edu.iq
mailto:shilan.abdullah@spu.edu.iq2
mailto:manal.Ali@spu.edu.iq

The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

1458

Sy y B0 A% 01So 5 31 B Ad (S35 (S rme b GSEL (sl S (53] s s 0 a8 Sy) B
5 epd 5 QIS i) essila S 1B o) ot B (s S Al sl (S sid 4 4S 4i) 18
Dijkstra csaSaai) SKhs i ySoaty (o el 51 Sty BI04 25 4 S diaay alls (So 5 (484 ,Y 5056
oA)30 5 Lol \Say iy (sailaly y B0 pdd | o) gt (SN A IS4 o oV 4 AR Al 5 S5
(EWU 5 0o Sines) Ja 50 ol 535 A K) s, S

NP-Hard (SSas i Sl 5 4l | sYas (i Sl GSASIS (g yi sl 4l 4584y (TSP) (s kil (s jladi 3 8 (s
ars ASaSolal Gl e 450 AR il g (galias ilSahy) B e IS4 43 TSP (i (S e jla i
ssedd (S35 84l By S (se A S TSP oLl 5« AismaiS il s S n Al So
4 TSP el 0SS 5o lSon A% (saSay ; B0] Siailad R ago Ay 553 a4l Lo 5)) 3100 4SS IS 5 gad
O P FPTIPE I ST INYERIP PUPLICR L S TSP P Rp POURCNIN PP R AR 7T
i) 550 gt Ol 5 A) o 3550 a5 o il o0 (5 a8 SISKG) 5 5ean LS Dijkstra (saSasin, B0 5 i sl

A g silaly S i 3555 Al 5 a8 IS 4Se gy i 58 oalaiah 4SS Cleds 5 Sy) K

(HF) oo 3lals (S 45 ((TSP) (s kil (5)adi 5 8 (4l «Dijkstra (saSaaiy y 5K A saSaay) K 1adig AL
1- Introduction:

A* algorithm is generally used to find the shortest path between two endpoints. Examples of such
problems include telephone traffic routing, network traffic routing, the games industry, robot path
planning, etc. As the importance of these fields increases, the A* algorithm has become the most
popular algorithm to solve such kinds of problems [1].

Many types of algorithms are used to solve TSP, for example by using genetic algorithms, Greedy
Heuristic Algorithms, spider monkey, and many others. More efficient solutions are required to solve
the pathfinder problems in a more complicated situation with bounded time and resources [2].

The objective of this research is to adapt the steps of the A* algorithm to work with travelling
salesman pathfinding problems. This means not only finding the shortest path but also visiting all
nodes for one time that is not from the A* traditional algorithm aspect.

2- Related Works

In past years, researchers have suggested several algorithms to solve TSP and many types of
improvement on the A-Star algorithm, the most popular are:

1- Genetic Algorithms (GA) that are used to solve TSP by using many types of (encoding, crossover,
and mutation) then find the fitness of the population to obtain the best gene [3, 4].

2- Atrtificial Bee Colony (ABC) algorithm is a new swarm-based optimization algorithm, inspired
by the foraging behavior of honeybees [5].

3- Combinatorial ABC (CABC) is one of the successful discrete versions of (ABC) algorithm that
can be used for combinatorial optimization problems that are applied to solve TSP [6].

4- The (CABC) algorithm was developed into the Quick Combinatorial Artificial Bee Colony -
qCABC- optimization algorithm for TSP which the onlooker bees’ behavior is modeled in a more
detailed way [7].

DOI: http://dx.doi.org/10.25098/8.1.31

211

@O0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

5- Solving the Traveling Salesman’s Problem Using the African Buffalo Optimization (ABO) is
used to build a mathematical model from the behavior of a species of wild cows and uses the
model to solve six difficult asymmetric instances from the TSPLIB and 33 benchmarks symmetric
Traveling Salesman’s Problem [8].

6- An Improved A-Star Algorithm Considering Water Current, Traffic Separation, and Berthing for
Vessel Path Planning is designed to obtain the path cost of the vessel in factors of bridge pier,
moored or anchored ship, port, shore, path length, current water, obstacle collision risk, traffic
separation rule and maneuverability restriction [9].

7- Path Planning of Restaurant Service Robot Based on A-star Algorithms with Updated Weights is
created to use an improved A-Star algorithm to discover the best path for a restaurant service
robot by using the gridded map of a restaurant to verify the results [10].

8- An Energy Efficient Routing Protocol for Wireless Sensor Networks using A-star Algorithm. In
this paper, a new energy-efficient routing protocol (EERP) has been designed for wireless sensor
networks using the A-star algorithm. The suggested routing method enhances the network lifetime
by sending data packets via the efficient shortest path [11].

In this paper, the adaptive A* star algorithm is used to solve TSP. The rest of the paper is organized
as follows Section (3) presents the methodology of the traditional A* algorithm. describes the
proposed method, and the simulation results and conclusion are demonstrated in section (4).

3- Methodology

Traditional A* and Dijkstra's algorithm are generic search algorithms that can be used to find
solutions for many problems, pathfinding just being one of them [12]. In the standard steps that are
used in A*, g(n) represents the exact cost from starting node to any node (n), h(n) represents the
estimated cost from the node (n) to the destination node (goal), and f(n)=g(n)+h(n). Fig.1 explains
the algorithm step-by-step. Dijkstra's algorithm is a special case of A* algorithms, where h(n)=0 for
all nodes [13]. Travelling Salesman Problem is one of the most popular problems that usually new
techniques are used to solve it. The description of the problem is: Given a set of cities, the distance
between every pair of cities, and the problem is to find the shortest possible path that visits every city
exactly one time.

DOI: http://dx.doi.org/10.25098/8.1.31
@O0

212

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Algorithm 1 Traditional A*
1: Input: A graph G(I.J) with source node start and goal node end
2: Qutput: Least cost path from start to end
3: steps:
i: procedure INITIALIZE
5 open—list — start
6. closed—list —()
= g(start) 0
8 h(start) « heuristic— function(start, end)
9. f(start) — g(start) + h(start)
10: while open— list # empty do
11: m « node on top of open-list, with least f
12: if m==end then
13: return
14 remove m form open-list
15: add m to elosed-list
16: for each n € child(m) do
17 if n € closed — list then
18; continue
19 cost « g(m) + distance(n, m)
20: if neopen—list & cost <g(n) then
21 remove 1 from open-list
22 if n € closed — list & cost < g(n) then
25 remove n from closed-list

24: if n ¢ open—list & n ¢ closed — list then
25: add n to open-list

2%: g(n) « cost

27 h(n) « heuristic — function(n, end)
25: f(n) «=g(m+h(n)

Fig. 1: Traditional A* algorithm

Table 1: The comparison between using traditional A* and adaptation A*algorithm

Algorithm A* Adaptation A*

Path Shortest path (not for all cities) Shortest path by visiting all cities
Heuristic Function Use the estimated distance between Prepared with HF and without HF
(HF) any city and the goal (Dijkstra's algorithm)

TSP Can’t use traditional A* Can use it

3.1 Properties of A* algorithm

A* has several useful properties: First, completeness which means A* is guaranteed to find a path
from the start to the goal if there exists a path. The second is admissibility implies to optimal
performance if h(n) is an admissible heuristic, which means h(n) is always less than or equal to the
actual cheapest path cost from (n) to the goal. The third property of A* is complexity, where it makes
the most efficient use of the heuristic. That is, no search methods that use the same heuristic function
to find an optimal path examine fewer nodes than A* [14,15].

3.2 Experimental study for generalize A* algorithm

In this paper, some adaptations of the A* algorithm done to work on TSP that mentioned in the
following table (1):

According to the Path factor by using the traditional A* algorithm only the shortest path (from
start to goal) is required, but in adaptation A*, it must visit all cities only one time. According to the
heuristic function (HF) with traditional A* use the estimated distance between the start node and the
goal with the distance from node to node, but in this paper, it solved as a traditional and Dijkstra's
algorithm (which means without HF) [16].

DOI: http://dx.doi.org/10.25098/8.1.31
@O0

213

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

By using ten cities (from Iraqg Map) as mentioned in table (2), all distances between nodes and the
heuristic function that represents the actual distance between each node and the goal were computed
by using Google Maps in KM.

Table 2: The distances between ten cities (in KM)

Cities ﬁ:;l:zma Kirkuk | Erbil | Duhok | Baghdad | Anbar | Najaf | Karbala | Basra | Hillah
ﬁ:ﬂ:ﬁma 0 94 145 |264 | 275 312|413 | 359 610 | 363
Kirkuk | 94 0 90 200 239 251 389 325 634 337
Erbil 145 90 0 116 319 311 464 399 721 414
Duhok 264 200 116 0 411 380 552 481 833 503
Baghdad | 275 239 319 411 0 101 143 87 444 94
Anbar 312 251 311 380 101 0 186 115 535 151
Najaf 413 389 464 552 143 186 0 71 400 54
Karbala | 359 325 399 481 87 115 71 0 423 41
Basra 610 634 721 833 444 535 400 423 0 386
Hillah 363 337 414 503 94 151 54 41 386 0

3.2.1 Process of extracting all possible solutions

With generalizing A* algorithms, helped to extract a series of all possible probabilities when
entering all nodes at the same time. This has been done using the following code:

Stepl: Initialization

Row =0 #the row being worked on

N =10 #number of Nodes

Probability = factorial (N-1) #number of possible solutions
City=1 #the start node

City-list={}

Step2: Find column solutions (from the first col. to n-2)
For (each Col. till N-2)

While (Row < Probability) and (City<=N)
Probability-Col= factorial (Col)
While (Probability-Col # Zero) and (City & City-list)
add City to the City-list
decrease Probability-Col by one
go to Row+1
go to next City
DOI: http://dx.doi.org/10.25098/8.1.31
214 GOE0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Step3: Find column solutions (of N-2 and N-1)

Row =0
While (Row <= Probability)
If (City & City-list) and (City<=N)

If (not reached to the last Col.)
add City to City-list in Row
add City to City-list in Row+1 and Col+1

Else
add City to City-list in Row
add City to City-list in Row +1 and col-1

go to next col
go to next city

Else
go to next City
go to Row+2

3.2.2 Adaptive A* algorithm and Dijkstra's algorithm

In Adaptive A* algorithm depends on the heuristic function to find the shortest path node (goal)
with the start point as the beginning step, then computed the remaining nodes with this goal to find
the path, and finally, calculate the distance between each node with others.

In Dijkstra's algorithm, only needed to find the value of each possible solution found in the
previous section and then find the minimum result as the best solution.

Building the Adaptive A* Algorithm program and Dijkstra’s Algorithm program are mentioned
by the following codes:

- Adaptive A* program code

Find the Goal # Choose the goal with the least HF
while (there is a node not visited)

while (current-city <=N) #number of Nodes

if (current-city ==goal)

go to the next city

if ((current-city <=N) and (current-city not in final-list) and (HF of current-city is minimum to other
cities))

add the current-city to the final-list

go to the next city

calculate the distance of the final-list

DOI: http://dx.doi.org/10.25098/8.1.31
@O0

215

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

- Dijkstra’s Algorithm code

For (each Row till probability)

Path =0

For (each Col till N-1)

path= path + distance [City-listfRow][Col],City-listfRow][Col+1]];
Length-path [Row] = path

Find-minimum (Length-path)

4- Outcome Results

The experiments were performed on a laptop Windows 10 with 16 GB of RAM and Intel(R)
Core(TM) i7-5600U CPU @ 2.60GHz 2.60 GHz, by Eclipse IDE for Java Developers - 2022-03.

From the tables below table (3 and 4), the following results can be noted after five iterations.

Table 3. Running Time, Number loops and Total Distance using Dijkstra Algorithm

Running Time

Test Number Dijkstra No. of Loops Total Distance (in

(Milliseconds) km)
1 1621 362880 1363
2 1599 362880 1363
3 1607 362880 1363
4 1548 362880 1363
5 1545 362880 1363

Table 4. Running Time, Number loops and Total Distance using A* algorithm

Running Time Total Distance (in
Test Number A* (Milliseconds) No. of Loops km)
1 1474 72 2017
2 1573 72 2017
3 1462 72 2017
4 1488 72 2017
5 1472 72 2017
DOI: http://dx.doi.org/10.25098/8.1.31
216

@IS0

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

5- Conclusion

The results from using the Dijkstra Algorithm are more appropriate than the A* algorithm through
the vectors of total distance and required time of implementation to solve the problem. The results
from using A* algorithm are reliable in the number of loops that needs to solve the problem although
they need approximately the same time of execution.

Based on the experiment, it is notable that Dijkstra Algorithm managed to achieve the optimum
outcomes on the majority of the problem posed.

References

[1] A. Rafig, T. Asmawaty Abdul Kadir, and S. Normaziah Ihsan, "Pathfinding Algorithms in Game
Development,” 10P Conference Series: Materials Science and Engineering, vol. 769, p. 012021,
2020/02/01 2020.

[2] H. A. Abdulkarim and I. F. Alshammari, "Comparison of algorithms for solving traveling
salesman problem," International Journal of Engineering and Advanced Technology, vol. 4, pp. 76-
79, 2015.

[3] E. Alkafaween and A.B.A. Hassanat, "Improving TSP Solutions Using GA with a New Hybrid
Mutation Based on Knowledge and Randomness,” Communications - Scientific letters of the
University of Zilina, vol. 22, no. 3, pp. 128-39, 2020.

[4] S. Sharma and V. Jain, "A Novel Approach for Solving TSP Problem Using Genetic Algorithm
Problem," in IOP Conference Series: Materials Science and Engineering, 2021, p. 012194.

[5] H. Jiang, "Artificial bee colony algorithm for traveling salesman problem,” in 2015 4th
International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, 2015,
pp. 468-472.

[6] D. Karaboga and B. Gorkemli, "A combinatorial Artificial Bee Colony algorithm for traveling
salesman problem,” 2011 International Symposium on Innovations in Intelligent Systems and
Applications, 2011, pp. 50-53, doi: 10.1109/INISTA.2011.5946125.

[7] B. Gorkemli and D. Karaboga, "Quick combinatorial artificial bee colony-qCABC-optimization
algorithm for TSP," in 2nd International Symposium on Computing in Informatics and Mathematics,
2013, pp. 97-101.

[8] J. B. Odili and M. N. Mohmad Kahar, “Solving the Traveling Salesman’s Problem Using the
African Buffalo Optimization,” Computational Intelligence and Neuroscience, vol. 2016, pp. 1-12,
2016, doi: 10.1155/2016/1510256.

[9] C. Liu, Q. Mao, X. Chu, and S. Xie, "An Improved A-Star Algorithm Considering Water Current,
Traffic Separation and Berthing for Vessel Path Planning,” Applied Sciences, vol. 9, p. 1057, 2019.

[10] R. Yang and L. Cheng, "Path Planning of Restaurant Service Robot Based on A-star Algorithms
with Updated Weights,” 2019 12th International Symposium on Computational Intelligence and
Design (ISCID), Hangzhou, China, 2019, pp. 292-295, doi: 10.1109/ISCI1D.2019.00074.

[11] A. Ghaffari, "An energy efficient routing protocol for wireless sensor networks using A-star
algorithm," Journal of applied research and technology, vol. 12, pp. 815-822, 2014.

[12] M. Nosrati, R. Karimi, and H. A. Hasanvand, "Investigation of the*(star) search algorithms:
Characteristics, methods and approaches,” World Applied Programming, vol. 2, pp. 251-256, 2012,

DOI: http://dx.doi.org/10.25098/8.1.31
QOEO

217

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University — Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

[13] S. Rabin and N. R. Sturtevant, "Pathfinding architecture optimizations,” in Game Al Pro 360,
ed: CRC Press, 2019, pp. 1-12.

[14] A. Botea, M. Miiller, and J. Schaeffer, "Near optimal hierarchical path-finding,” J. Game Dev.,
vol. 1, pp. 1-30, 2004.

[15] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, and E. Gunawan, "A systematic literature
review of A* pathfinding," Procedia Computer Science, vol. 179, pp. 507-514, 2021.

[16] D. Rachmawati and L. Gustin, "Analysis of Dijkstra’s algorithm and A* algorithm in shortest
path problem,™ in Journal of Physics: Conference Series, 2020, p. 012061.

DOI: http://dx.doi.org/10.25098/8.1.31
QOB

218

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/8.1.31

