
The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.31DOI:

210
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Abstract:

Generalize A* is a search algorithm that has widely been used in the pathfinding research group.

Its efficiency, simplicity, and modularity are often highlighted as its strengths compared to other

algorithms. Dijkstra algorithm is another type of A* but without using of heuristic function. These

algorithms were used previously to find the shortest path between two states (start and goal).

Travelling Salesman Problem (TSP) is one of the most common combinatorial optimization

problems. It comes in the categorization of NP-Hard problems. The solutions of TSP are not possible

using traditional algorithms. It is having many application branches like mathematics, computer

science, and engineering. TSP is designed to find the shortest path by visiting all instances of the

problem. This study makes an adaptation to the A* algorithm to work on TSP with the heuristic

function that tries to look for a better path which gives priority to nodes that are supposed to be better

than others and Dijkstra’s algorithm just explores all possible ways and compare between the two

algorithms for the same problem. The study result will help for future studies.

Keywords: A* algorithm, Dijkstra’s algorithm, travelling salesman problem (TSP), heuristic

function (HF).

 الملخص:

تم استخدامها على ي هي خوارزمية بحث * Aلحل العديد من المشكلات المعقدة. الملائمةطرق تحسين من تصبح خوارزميات البحث

بالخوارزميات مقارنة قوتها كنقاط ونمطيتها وبساطتها كفاءتها تمييز يتم ما غالبًا المسار. عن البحث مجموعة في واسع نطاق

الكشف عن مجريات الأمور. استخدمت هذه * A هي نوع آخر من Dijkstra الأخرى. خوارزمية بدون استخدام وظيفة ولكن

 .)البداية والهدف(نقطتينالخوارزميات سابقًا للعثور على أقصر مسار بين

حل NP-Hard. واحدة من أكثر مشاكل التحسين الاندماجي شيوعًا. يأتي في تصنيف مشاكل (TSP) تعد مشكلة البائع المتجول

لديها العديد من الفروع التطبيقية مثل الرياضيات وعلوم الكمبيوتر كما ان غير ممكنة باستخدام الخوارزميات التقليدية. TSP مشكلة

تصميم تم جميع TSP والهندسة. زيارة من خلال أقصر طريق على الدراسة تعمل. العقدللعثور تكي على هذه على إجراء ف

يعطي الأولوية ان حاول البحث عن مسار أفضل يمع وظيفة الكشف عن مجريات الأمور التي TSP للعمل على * A خوارزمية

جميع الطرق الممكنة Dijkstra تستكشف خوارزميةبينما ، للوصول الى الهدفللعقد التي من المفترض أن تكون أفضل من غيرها

 .لى الدراسات المستقبليةتأثيير عنتائج الدراسة لها لنفس المشكلة. انوالمقارنة بين خوارزمياتللوصول الى الهدف

 (. HF(، الوظيفة الإرشادية)TSP، مشكلة البائع المتجول) Dijkstra* ، خوارزمية Aخوارزمية : الكلمات المفتاحية

Generalize A* Algorithms to Solve Travel Salesman Problem

Maha Sabah Saeed1, Shilan Abdullah Hassan2, Manal Ali Atiyah3

1,2Network Department, Computer Science Institute, Sulaimani Polytechnic University,

Sulaimani, Iraq
3Database Department, Computer Science Institute, Sulaimani Polytechnic University,

Sulaimani, Iraq

Email: maha.saeed@spu.edu.iq1, shilan.abdullah@spu.edu.iq2, manal.Ali@spu.edu.iq3

http://dx.doi.org/10.25098/8.1.31
mailto:maha.saeed@spu.edu.iq
mailto:shilan.abdullah@spu.edu.iq2
mailto:manal.Ali@spu.edu.iq

 The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.31

211

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

 : پوختە

 ی ک ێتميرۆلگ ەئ *A .کانەزڵۆئا ەشێک ەل کێرۆز یرکردنەسەچار ۆباشکردن ب یگونجاو یوازێش ەبنەد انەڕگ یکانەتميرۆلگ ەئ

زەکارهاتووەب گاداڕێ ەیوەنيزۆد ەیوەنيژێتو یگروپ ەل رفراوانەب یکەيەوێش ەب ەک ەانەڕگ ساد يیکارا رجارۆ. و ەيیو

ئاماژ یکانەتميرۆلگ ەئ ەب راوردەب ەب یکانەزێهە ب ڵەخا کەو ەیکييەلار يۆدۆم ئتێکر ەدێپ ەیتر Dijkstra ەیکەتمي رۆلگ ە.

 ەیوەنيزۆد ۆب ناێهەد انيکارەب شتر ێپ ەیتمانيرۆلگ ەئ مە. ئیستيورێه ینکشنەف ینانێکارهەب ێبەب مەڵاب يە *A لە یتر یک ێرۆج

 .و ئامانج(کردنێستپە)د ڵخادوو وانێن ەل گاڕێ نيکورتتر

 NP-Hard یکانەشێک ینکردنێلۆپ ە. لوەڵاک ێت یباشکردن یکانەشێک نيباوتر ەل ەک ێکيە (TSP) یاريشتەگ یاريشۆفر ەیشێک

 ەيە ه یشنەيک ڵيپەئ یلق ن يندەچ ەک يرە. ختێناتوانر ی ديقلەت یکانەتميرۆلگ ەئ ینانێکارهەب ە ب TSP ەیشێک یکانەرەسە. چارتێد

ئ ر،ەوتيمپۆ ک یزانست ،یرکاريب ەل کەو موو ەه یکردنيردانەس ەڵ گەل گا ڕێ نيکورتتر ەیوەنيزۆد ۆب TSP .یاريندازەو

ل ۆب کاتەد *A ەیکەتميرۆلگ ە ئ رەسەل کێگونجاندن ەيەوەنيژێتو مە. ئەژراوڕێدا ەکەشێ ک یکانەنموون ە ب TSP رەسەکارکردن

باشتر بن ەارڕيب ەک ەیانێيگر وەب داتەد تيەوەولەئ ەک تەڕێباشتردا بگ یک ێوڕێڕە یدواەب داتەدڵوەه ەک یستيورێه ینکشنەف

ئ یوانەل ب ەوەتۆڵێکەد یرەگەئ ی گاکانڕێ مووەه نهاەت Dijkstra ەیکەتميرۆلگ ە تر و داەدووان وەئ وانێن ەل کاتەد راورد ەو

 .ەيەداهاتوو ه یکانەوەنيژێتو رەس ەل یرەگ ي کار ەکەوەني ژێتو ینجامە. ئەشێک مانەه ۆب کانەتميرۆلگ ەئ

 (. HF) رەدەئاماژ یرکەئ(، TSP) یاريشتەگ یاريشۆفر ەیشێ، کDijkstra ەیکەتميرۆلگ ە*، ئA ەیکەتميرۆلگ ەئ کليلە وشە:

1- Introduction:

A* algorithm is generally used to find the shortest path between two endpoints. Examples of such

problems include telephone traffic routing, network traffic routing, the games industry, robot path

planning, etc. As the importance of these fields increases, the A* algorithm has become the most

popular algorithm to solve such kinds of problems [1].

Many types of algorithms are used to solve TSP, for example by using genetic algorithms, Greedy

Heuristic Algorithms, spider monkey, and many others. More efficient solutions are required to solve

the pathfinder problems in a more complicated situation with bounded time and resources [2].

The objective of this research is to adapt the steps of the A* algorithm to work with travelling

salesman pathfinding problems. This means not only finding the shortest path but also visiting all

nodes for one time that is not from the A* traditional algorithm aspect.

2- Related Works

 In past years, researchers have suggested several algorithms to solve TSP and many types of

improvement on the A-Star algorithm, the most popular are:

1- Genetic Algorithms (GA) that are used to solve TSP by using many types of (encoding, crossover,

and mutation) then find the fitness of the population to obtain the best gene [3, 4].

2- Artificial Bee Colony (ABC) algorithm is a new swarm-based optimization algorithm, inspired

by the foraging behavior of honeybees [5].

3- Combinatorial ABC (CABC) is one of the successful discrete versions of (ABC) algorithm that

can be used for combinatorial optimization problems that are applied to solve TSP [6].

4- The (CABC) algorithm was developed into the Quick Combinatorial Artificial Bee Colony -

qCABC- optimization algorithm for TSP which the onlooker bees’ behavior is modeled in a more

detailed way [7].

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.31DOI:

212
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

5- Solving the Traveling Salesman’s Problem Using the African Buffalo Optimization (ABO) is

used to build a mathematical model from the behavior of a species of wild cows and uses the

model to solve six difficult asymmetric instances from the TSPLIB and 33 benchmarks symmetric

Traveling Salesman’s Problem [8].

6- An Improved A-Star Algorithm Considering Water Current, Traffic Separation, and Berthing for

Vessel Path Planning is designed to obtain the path cost of the vessel in factors of bridge pier,

moored or anchored ship, port, shore, path length, current water, obstacle collision risk, traffic

separation rule and maneuverability restriction [9].

7- Path Planning of Restaurant Service Robot Based on A-star Algorithms with Updated Weights is

created to use an improved A-Star algorithm to discover the best path for a restaurant service

robot by using the gridded map of a restaurant to verify the results [10].

8- An Energy Efficient Routing Protocol for Wireless Sensor Networks using A-star Algorithm. In

this paper, a new energy-efficient routing protocol (EERP) has been designed for wireless sensor

networks using the A-star algorithm. The suggested routing method enhances the network lifetime

by sending data packets via the efficient shortest path [11].

In this paper, the adaptive A* star algorithm is used to solve TSP. The rest of the paper is organized

as follows Section (3) presents the methodology of the traditional A* algorithm. describes the

proposed method, and the simulation results and conclusion are demonstrated in section (4).

3- Methodology

Traditional A* and Dijkstra's algorithm are generic search algorithms that can be used to find

solutions for many problems, pathfinding just being one of them [12]. In the standard steps that are

used in A*, g(n) represents the exact cost from starting node to any node (n), h(n) represents the

estimated cost from the node (n) to the destination node (goal), and f(n)=g(n)+h(n). Fig.1 explains

the algorithm step-by-step. Dijkstra's algorithm is a special case of A* algorithms, where h(n)=0 for

all nodes [13]. Travelling Salesman Problem is one of the most popular problems that usually new

techniques are used to solve it. The description of the problem is: Given a set of cities, the distance

between every pair of cities, and the problem is to find the shortest possible path that visits every city

exactly one time.

http://dx.doi.org/10.25098/8.1.31

 The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.31

213

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Table 1: The comparison between using traditional A* and adaptation A*algorithm

3.1 Properties of A* algorithm

A* has several useful properties: First, completeness which means A* is guaranteed to find a path

from the start to the goal if there exists a path. The second is admissibility implies to optimal

performance if h(n) is an admissible heuristic, which means h(n) is always less than or equal to the

actual cheapest path cost from (n) to the goal. The third property of A* is complexity, where it makes

the most efficient use of the heuristic. That is, no search methods that use the same heuristic function

to find an optimal path examine fewer nodes than A* [14,15].

3.2 Experimental study for generalize A* algorithm

 In this paper, some adaptations of the A* algorithm done to work on TSP that mentioned in the

following table (1):

According to the Path factor by using the traditional A* algorithm only the shortest path (from

start to goal) is required, but in adaptation A*, it must visit all cities only one time. According to the

heuristic function (HF) with traditional A* use the estimated distance between the start node and the

goal with the distance from node to node, but in this paper, it solved as a traditional and Dijkstra's

algorithm (which means without HF) [16].

Algorithm A* Adaptation A*

Path Shortest path (not for all cities) Shortest path by visiting all cities

Heuristic Function

(HF)

Use the estimated distance between

any city and the goal

Prepared with HF and without HF

(Dijkstra's algorithm)

TSP Can’t use traditional A* Can use it

Fig. 1: Traditional A* algorithm

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.31DOI:

214
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

By using ten cities (from Iraq Map) as mentioned in table (2), all distances between nodes and the

heuristic function that represents the actual distance between each node and the goal were computed

by using Google Maps in KM.

Cities
Sulayma

niyah
Kirkuk Erbil Duhok Baghdad Anbar Najaf Karbala Basra Hillah

Sulayma

niyah
0 94 145 264 275 312 413 359 610 363

Kirkuk 94 0 90 200 239 251 389 325 634 337

Erbil 145 90 0 116 319 311 464 399 721 414

Duhok 264 200 116 0 411 380 552 481 833 503

Baghdad 275 239 319 411 0 101 143 87 444 94

Anbar 312 251 311 380 101 0 186 115 535 151

Najaf 413 389 464 552 143 186 0 71 400 54

Karbala 359 325 399 481 87 115 71 0 423 41

Basra 610 634 721 833 444 535 400 423 0 386

Hillah 363 337 414 503 94 151 54 41 386 0

3.2.1 Process of extracting all possible solutions

With generalizing A* algorithms, helped to extract a series of all possible probabilities when

entering all nodes at the same time. This has been done using the following code:

Step1: Initialization

Row = 0 #the row being worked on

N = 10 #number of Nodes

Probability = factorial (N-1) #number of possible solutions

City = 1 #the start node

City-list={}

Step2: Find column solutions (from the first col. to n-2)

For (each Col. till N-2)

While (Row < Probability) and (City<=N)

Probability-Col= factorial (Col)

While (Probability-Col ≠ Zero) and (City ∉ City-list)

add City to the City-list

decrease Probability-Col by one

 go to Row+1

go to next City

Table 2: The distances between ten cities (in KM)

http://dx.doi.org/10.25098/8.1.31

 The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.31

215

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Step3: Find column solutions (of N-2 and N-1)

Row = 0

While (Row <= Probability)

If (City ∉ City-list) and (City<=N)

If (not reached to the last Col.)

add City to City-list in Row

add City to City-list in Row+1 and Col+1

 Else

add City to City-list in Row

add City to City-list in Row +1 and col-1

go to next col

go to next city

 Else

go to next City

go to Row+2

3.2.2 Adaptive A* algorithm and Dijkstra's algorithm

In Adaptive A* algorithm depends on the heuristic function to find the shortest path node (goal)

with the start point as the beginning step, then computed the remaining nodes with this goal to find

the path, and finally, calculate the distance between each node with others.

In Dijkstra's algorithm, only needed to find the value of each possible solution found in the

previous section and then find the minimum result as the best solution.

Building the Adaptive A* Algorithm program and Dijkstra’s Algorithm program are mentioned

by the following codes:

- Adaptive A* program code

Find the Goal # Choose the goal with the least HF

while (there is a node not visited)

while (current-city <=N) #number of Nodes

if (current-city ==goal)

go to the next city

if ((current-city <=N) and (current-city not in final-list) and (HF of current-city is minimum to other

cities))

add the current-city to the final-list

go to the next city

calculate the distance of the final-list

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.31DOI:

216
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

- Dijkstra’s Algorithm code

For (each Row till probability)

Path =0

For (each Col till N-1)

path= path + distance [City-list[Row][Col],City-list[Row][Col+1]];

Length-path [Row] = path

Find-minimum (Length-path)

4- Outcome Results

 The experiments were performed on a laptop Windows 10 with 16 GB of RAM and Intel(R)

Core(TM) i7-5600U CPU @ 2.60GHz 2.60 GHz, by Eclipse IDE for Java Developers - 2022-03.

From the tables below table (3 and 4), the following results can be noted after five iterations.

Table 3. Running Time, Number loops and Total Distance using Dijkstra Algorithm

Test Number

Running Time

Dijkstra

(Milliseconds)

No. of Loops
Total Distance (in

km)

1 1621 362880 1363

2 1599 362880 1363

3 1607 362880 1363

4 1548 362880 1363

5 1545 362880 1363

Table 4. Running Time, Number loops and Total Distance using A* algorithm

Test Number
Running Time

A* (Milliseconds)
No. of Loops

Total Distance (in

km)

1 1474 72 2017

2 1573 72 2017

3 1462 72 2017

4 1488 72 2017

5 1472 72 2017

http://dx.doi.org/10.25098/8.1.31

 The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/8.1.31

217

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

5- Conclusion

The results from using the Dijkstra Algorithm are more appropriate than the A* algorithm through

the vectors of total distance and required time of implementation to solve the problem. The results

from using A* algorithm are reliable in the number of loops that needs to solve the problem although

they need approximately the same time of execution.

Based on the experiment, it is notable that Dijkstra Algorithm managed to achieve the optimum

outcomes on the majority of the problem posed.

References

[1] A. Rafiq, T. Asmawaty Abdul Kadir, and S. Normaziah Ihsan, "Pathfinding Algorithms in Game

Development," IOP Conference Series: Materials Science and Engineering, vol. 769, p. 012021,

2020/02/01 2020.

[2] H. A. Abdulkarim and I. F. Alshammari, "Comparison of algorithms for solving traveling

salesman problem," International Journal of Engineering and Advanced Technology, vol. 4, pp. 76-

79, 2015.

[3] E. Alkafaween and A.B.A. Hassanat, "Improving TSP Solutions Using GA with a New Hybrid

Mutation Based on Knowledge and Randomness," Communications - Scientific letters of the

University of Zilina, vol. 22, no. 3, pp. 128-39, 2020.

[4] S. Sharma and V. Jain, "A Novel Approach for Solving TSP Problem Using Genetic Algorithm

Problem," in IOP Conference Series: Materials Science and Engineering, 2021, p. 012194.

[5] H. Jiang, "Artificial bee colony algorithm for traveling salesman problem," in 2015 4th

International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, 2015,

pp. 468-472.

[6] D. Karaboga and B. Gorkemli, "A combinatorial Artificial Bee Colony algorithm for traveling

salesman problem," 2011 International Symposium on Innovations in Intelligent Systems and

Applications, 2011, pp. 50-53, doi: 10.1109/INISTA.2011.5946125.

[7] B. Gorkemli and D. Karaboga, "Quick combinatorial artificial bee colony-qCABC-optimization

algorithm for TSP," in 2nd International Symposium on Computing in Informatics and Mathematics,

2013, pp. 97-101.

[8] J. B. Odili and M. N. Mohmad Kahar, “Solving the Traveling Salesman’s Problem Using the

African Buffalo Optimization,” Computational Intelligence and Neuroscience, vol. 2016, pp. 1–12,

2016, doi: 10.1155/2016/1510256.

[9] C. Liu, Q. Mao, X. Chu, and S. Xie, "An Improved A-Star Algorithm Considering Water Current,

Traffic Separation and Berthing for Vessel Path Planning," Applied Sciences, vol. 9, p. 1057, 2019.

[10] R. Yang and L. Cheng, "Path Planning of Restaurant Service Robot Based on A-star Algorithms

with Updated Weights," 2019 12th International Symposium on Computational Intelligence and

Design (ISCID), Hangzhou, China, 2019, pp. 292-295, doi: 10.1109/ISCID.2019.00074.

[11] A. Ghaffari, "An energy efficient routing protocol for wireless sensor networks using A-star

algorithm," Journal of applied research and technology, vol. 12, pp. 815-822, 2014.

[12] M. Nosrati, R. Karimi, and H. A. Hasanvand, "Investigation of the*(star) search algorithms:

Characteristics, methods and approaches," World Applied Programming, vol. 2, pp. 251-256, 2012.

http://dx.doi.org/10.25098/8.1.31

The Scientific Journal of Cihan University – Sulaimaniya PP: 210-218
Volume (8), Issue (1), June 2024

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/8.1.31DOI:

218
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

[13] S. Rabin and N. R. Sturtevant, "Pathfinding architecture optimizations," in Game AI Pro 360,

ed: CRC Press, 2019, pp. 1-12.

[14] A. Botea, M. Müller, and J. Schaeffer, "Near optimal hierarchical path-finding," J. Game Dev.,

vol. 1, pp. 1-30, 2004.

[15] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, and E. Gunawan, "A systematic literature

review of A* pathfinding," Procedia Computer Science, vol. 179, pp. 507-514, 2021.

[16] D. Rachmawati and L. Gustin, "Analysis of Dijkstra’s algorithm and A* algorithm in shortest

path problem," in Journal of Physics: Conference Series, 2020, p. 012061.

http://dx.doi.org/10.25098/8.1.31

