The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Improve Search Performance for R+ tree Learned Spatial Index \

Galawizh M. Najeeb® 2, Nzar A. Ali*

! Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, Iraq
2 Technical College of Engineering, Sulaimani Polytechnic University, Sulaimani, Iraq
3School of Administration and Economic, Department of Statistics and Informatics,
University of Sulaimani, Sulaimani, Iraq
4 Department of Computer Science, Cihan University- Sulaimaniya, Sulaimaniya, Iraq

Emial: galawizh.najeeb@spu.edu.ig*? , nzar.ali@univsul.edu.ig® /

Abstract:

The R tree algorithm is used to give index to each spatial data sets of (point, line polygon spatial
objects). Our map datasets contain 1048575 records for point, as well as for line and polygon each.
Machine learning approach used to learn the indices. Then nearest neighbor queries (NNQ) are carried
out in purpose of evaluating system performance for proposed learned index. The evaluation of
proposed indexing done based on query execution time. Execution times of k-Nearest neighbor query
in learned methods for all kind of spatial objects (point, line, and polygon) are calculated, that 25
random sample points were took for each of them. In order to compare learnt and conventional
indexing, we also developed the traditional indexing using the R+ tree technique. So, a significant
finding that goes beyond the suggested approach (R* Learned Spatial Index (R* LSI)) is that we
reached less execution times in learned index method for nearest neighbor queries for all three spatial
objects. Getting benefits of Microsoft SQL Server database for handling spatial objects indices. We
propose that machine learning (ML) allows for the independent creation of specific index structures
by making it possible to design a model that reproduce the patterns in the data. We explore the extent
to which learning models may replace traditional index structures like R* tree. Finally measuring the
learned index (R* LSI) is done by getting benefits of both parameters which are, mean square error
(MSE) and R-square (R?). The estimator is linear regression which is used in machine learning
approach to make a model. Enhancing spatial query performance is done through the minimum
execution time of spatial NNQ in this research.

Key words: Learned index, R* tree, nearest neighbor spatial query.
roadlall

@ sind (Aple S | o aliae | L) Sl il e gane JSU o yed sllac Y 5 adll R ¥ dge)l 53 padind

el g w23ty Lgia IS abiaall g Jasll) A8l ¢ Aaiill S 1048575 (e L dualall Ll jall cilily Cile sana
.z i) aleiall (u sedll Alail glol ani o jrs (NNQ) 5 staal) oY) CilaDlainl) 385 oy o ol i all aledl V)
Lgalad a3l (5 5kl 3 K o 81) slaall aDlaias) 20855 <8 5 Ol o3 2 DeitasV) 205 g o 2L Ayl A ygdl) i
L el 4)lie dal e et JSI 400 siic de 4hadi D5 24 & G ¢ (pliadl) g Jadll 5 ddaiill) AslSall IS o) 55l anand
el slati A Asgal) dagill Gl ¢ A 3 padll R Y A aladiiuly Apaal) A jedl) yy shaty Wyl Liad ¢ dpail) 5 daleial
CUAY Al G pedl) A8 yla 8 J81 2 cld gl) Lleas Wil 8 (R * Learned Spatial Index (R * LSI)) ¢l
& Jalaill Microsoft SQL Server <y sacls Xl g e J gaal) A5 AlSall LS apead 3) laal) SlaDlatiny)
73 548 apanai 4ali) JMA (e Baasall G gdl) JShgd Jiisal) ¢ LEYL (ML) (A Al sy () - it Al Sl LS o jlgd

DOI: http://dx.doi.org/10.25098/7.1.3
4 | o een

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3
mailto:galawizh.najeeb@spu.edu.iq1,2

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

R ad e il G jedll JSUa Jae alaill 7 3lai 438 Jad o Sy 3 el CadSins bl 8 Llast) 2Ll ey
i) Uadll la gt A laleall e JS W) 3e e Jseandl B34 e (R LSH) aaiSall igall Gl oy ¢) 4]
POELNOY ol Cpans Al 7 gad Canl gJY\ alail) UL L;M\ GL.;S\ Dlaaay) e yasal) .R-square (RZ) s (MSE)

ol 13 8 S NNQ 285 € 5 (e (0] aadl DA (g SIS

S A YT sl (R * 5y caleial il - Aalial) cilalSl)
484 g

S (Ao 5 i (Jla) Al) a8 Sy ada S e 4p SGaus SN g i Sy (S8)y RY ey SG
oy L oS Aan e 5 a3 8 5 din s e (Jia 5 Kensaal s 1048575 pleasadadas Sl
B it 4 (NNQ) o) 2 S 3 (HSo lmm gy QUL cia IS4 (o o sy (5 5208 3048 il (g 53)8
SIS Ay (i iy 434S) S Ly mSann aiBoasdan (0)33 plaid (1o g S Lk 0 552 i 0 e sk 2 b (51040
5eAh 53 1S 550 58 o) 6l Ak o G 3 (e sl 00 sk (S (TS e aladts Sl g (S0 Sadda
3005l 8 s OLASay b 5 (So pAn (54 5ai JIA 25 48 e 80 sla ol (483805 5 Jdin (J8) (ol e (Siidie e
RY (AlSaSiSas Sl HS43 45 e sty GladipnlBad 30 jSauSaaid dad (S 3)) o (i 5 550 58 (39)SauS3aid (5o 540
4 55 (R* LSI)(R* Learned Spatial Index) < e sl S iy (s k) 4148 8o 8 S sy 330 adl S tree
o AR 5 sl (Mo iy (S0 2 SN (550 B (5t Al yledS g Sinyin SAIS 435548 i 4S
Aih e p st Ja8dd o Salidle 5 Microsoft SQL Server e sl i (JlSed s s lilgiuedty ASdgyl 14é 414
e oyl SN (AT (5 3R s (3 a5 53 43 48y (ML) Liell (g0 i 4S (1S Jliiy A (Sa) jad
L e 2idn B 48 5aSen 5 gl o st 3Gl A o sAitigaadn Ay LSUIY 5L LSAGAAS A4S CSHlia S i Sl o 01K) 4
R*) S 50 588 o o 5%y (2 Sl sl Ianli 3 4l o i 50 (330)0 R So 5 (52845 auSinid il g8y (548n 4800y (s 95008
5 (MSE) o sliale o5 38)l sa saban cal (s y2 4S iy ol 4o il Jly 550 AR (525 500 (Sliigiuwry 4 (LS|
BN 550 32 i IS4 13 kel (g 50 5 (5 iy A4S s sadSasl Al 4y 4% milleas (R?) lass Ry
3 Al 3531 pal () 348 NNQ (Sindin (IS 0 JiedS (a8 Al ol 48 (5 b (5145 (50 503 S)y Sl e
Syl alaidd

(st (gl 53 (R T (SR)3 «0 s 508 (S 14 g AL

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

47

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

1. INTRODUCTION

Geometric types of data or spatial data types offer a basic concept for simulating the interactions,
attributes, and operations of objects located in space, along with their geometrical form. Objects in
space provided from point, line, polygon, and data having higher dimensions are called spatial data.
The aim of R* tree is to retain spatial query performance improving; it could deal with less execution
time Nearest Neighbor Inquiries [1]. Sellis et al. and Faloutsos et al. (1987) [2] introduced the R* tree,
a variation of the R-tree. Hierarchical data structures include R* trees. They are used to dynamically
organize a collection of d-dimensional geometric objects, which are represented by minimal bounding
d-dimensional rectangles (abbreviated MBRs in the sequel) [3]. Modern systems utilize index
structures that are extensively specialized towards improving query efficiency to keep up with the
volume of data that is created daily [4]. A sensible spatial index structure may significantly increase
the storage efficiency and query performance of the geographic database. A book's catalogue, for
instance, might be thought of as an index. This catalog makes it easier to comprehend the book's
overall structure and makes it simple for readers to find the pages they wish to read. If there is no
appropriate and effective index structure, the search will take a long time, especially when working
with a lot of spatial data. As a result, creating an effective index structure is crucial for retrieving
spatial data. Grid index structure and R tree index structure are used mostly in the current spatial
databases for data query processing[5]. The goal of the learnt index is to learn a function that
associates a search key with a data object's storage location[6]. The fact that we do not argue that
learned indexes should completely replace traditional index structures must be emphasized. Instead,
this study's main contribution which complements earlier work is to explain and evaluate the potential
of a special approach for creating indexes. Multi-dimensional objects can be handled in several ways.
Finding the minimal bounding rectangle (MBR) of the given item is how the techniques handle
handling more complicated objects, such as circles, polygons, etc. examining techniques for dealing
with multidimensional points, as these raise numerous insightful points that also apply to rectangles.
There are some methods for dealing with objects, first, methods for multi-dimensional Points
Partitioning of a region, known as a split. By inserting one (or more) hyper planes that also divide a
region into distinct sub-regions, the split is accomplished [7]. These techniques are done depending
on position, dimensionality and locality attributes as shown in table (1).

Table (1): Hlustration N-Dimensional Methods [6]

Attribute Position Dimensionality | Locality
grid file quad-trees grid file
K-D-B-trees oct-trees hierarchical
Methods

decomposition

k-d trees k-d trees

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

48

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

A second method is methods for rectangles, a- methods that transform the rectangles into points.
Therefore, one of the previously mentioned methods for storing points can be chosen. k-d trees, grid
file, after a rotation of the axes. In order to prevent an asymmetric distribution of points that would
compromise the efficiency of the grid file, rotation is required. b- techniques for mapping a k-d space
onto a 1-d region that make use of space filling curves. Such as z-transform, transform k-dimensional
objects to line segments [6]. And Quadtree that scan pixels in a k-dimensional space. c- Methods that
Divide the Original Space into Appropriate Sub-regions (overlapping or disjoint). Any of the
previously described methods for points can be used to deconstruct the space if the regions are not
connected. The possibility that a rectangle may cross a splitting hyper plane presents the only
challenge. One option is to divide the problematic rectangle into two sections, then tag each piece to
show that it is a part of the same rectangle. R-trees are suitable for components which are symmetric
and either points or regions. We used R* tree, it is a particular kind of R-tree that prevents the
performance decrease brought on by overlapping sections. A height-balanced tree with intermediate
and leaf nodes makes up the information representation [8].

Mean Square Error (MSE), is a measure of the quality of an estimator. It assesses the average
squared difference between the observed and predicted values. When a model has no error, the MSE
equals zero. The percentage of the variation in the dependent variable that can be predicted from the
independent variable is a function of coefficient of determination in statistics and is symbolized by
the R?, its range is 0 to 1. As the R? values are close to 1, it is the optimal situation, our estimated R?
values provide us a confidence of our suggested solution.

2. RELATED WORK

In research [9] a variation to R trees, R* trees, is introduced. All algorithms needed to search,
update and pack the structure are thoroughly examined, and the analytical findings show that R*
While exploring files with numbers of rectangles, it can reduce the number of disk requests by up to
50% compared to an R tree. Lauther [10] and Rosenberg [11] employed kd-trees. Nievergelt and
Hinrichs [12] Following rotating the axes, utilizing the grid file was advised. [13] Proposed new R-
tree packing techniques for static databases. Considering a set of rectangles, they sort items while
creating a bottom-up R tree. The innovation of this work is the use of fractals, and specifically the
Hilbert curve, to achieve better ordering of the rectangles and eventually better packing. It was
suggested to use a hybrid index structure made of a 3D multi-level adaptive grid as well as an R tree.
[14]Proposed a nearest neighbor query algorithm based on space-filling curve grid division.

Using the dimensionality reduction and data clustering properties of the space-fulfilling curve, this
technique ordered the points in the grid sequentially. By traveling to the query point's location and
the points in the grid's immediate vicinity, one may determine their nearest neighbor. [15], The R*
tree and multi-level grid made up the majority of the index architecture. The extent, wide, and depth
of the grid were determined after the set of data was analyzed using the multi-level automated grid
technique based on normal distribution. Furthermore, the information area was rapidly and effectively
partitioned using a multi-level adaptive grid structure, and optimal indexing was accomplished by
getting the benefit of the no overlapping of the intermediate nodes of the R™ tree. [16] In order to
expedite the precise nearest neighbor approach in high-dimensional Euclidean space, this work
investigates lower bound-based methods. Utilizing block vectors and the Cauchy-Schwartz

DOI: http://dx.doi.org/10.25098/7.1.3

49

©lolSle)

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

inequality, they calculate the lower bound of Euclidean Distance. In order to allow effective similarity
query processing in metric spaces, we offer a unique indexing strategy termed LIMS that makes use
of data clustering, pivot-based data transformation methods, and learning indexes. The underlying
data is divided into clusters in LIMS such that each cluster has a comparatively homogeneous
distribution of data[17]. In [18], the authors propose a brand-new search structure that is GPU-
friendly and is predicated on nearest neighbor graphs and information spreading on graphs. Their
approach is developed to take benefit of GPU structures to speed up the hierarchical development of
the index structure and query execution. [19] Presents Flood, a multi-dimensional in-memory read-
optimized index that automatically adjusts to a specific dataset and workload by coordinating index
structure and data storage layout optimization.

3. Machine Learning Approach

Machine learning is a method of data analysis that automates the analytical model building process.
It is a subset of artificial intelligence that is predicated on the notion that computers are capable of
learning from data, recognizing human behavior, and making decisions with little to no human
involvement. Despite the fact that many machine learning algorithms have been around for a while,
it is still difficult to automatically conduct intricate mathematical operations on massive volumes of
data often and quickly. Is an updated development. As long as it uses a consistent method for learning
from data, machine learning can undoubtedly automate learning. The data is used to train the Learned
Index models. Their most important discovery is that performance may be greatly enhanced by
utilizing models that can adjust to the data distribution in order to generate a reasonable prediction as
to where a key actually lies[20]. Regression models, instance-based algorithms, decision trees,
Bayesian techniques, and artificial neural networks are just a few of the machine learning algorithms
proposed in this field that are pertinent to the learning task [21].

4. Spatial Data Structure R* tree

Techniques for clustering and spatial indexing must both be considered in a spatial access strategy.
Without a spatial index, it is necessary to do a "full table scan" in a relational database to determine
whether each item in the database satisfies the spatial selection requirement. In fact, this is
inappropriate for interactive usage and the majority of other applications since geographic data sets
are frequently quite vast. A spatial index is therefore necessary in order to effectively locate the
relevant object addresses without having to look at every item. Index structures are the solution
whenever efficient data access is required, and a broad range of options are available to meet the
varying demands of distinct access patterns [22]. An R* tree is a method for looking up data using a
location, often (X, y) and often for locations on the. It is both a height-balanced tree as well as a
variation of the utilized for. R * tree handle the cases “forking” easily, because they split these large
data objects into smaller ones, and also the R* tree, can be used in a database system in order to index
any kind of geometric data [23]. An example of R tree data structure is represent in Fig (1).

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

50

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

I R1 R4 R11
: R3 RO
| RS R13
[}
1 R10 |
1Ra | |R14
1
Eoa a3 w g [
i R1Z | i iy |
n ! ' R7 |[R18 | ¥
: | R17 | b
1 e N e RS T o o |]
'R6 . L. = !
: R16 : R19| |
e I
R15 1 | |
. ' | |
N g g N 5 5 5 O O3 I O oy a3 iy N N N N N N | "
L 3 I
= - —- - — - - — — - —- — — e e e (e e e e e e e e e e e e e e e e [e = J
R1 | R2 |
— —
R3 | R4 | RS | r& | R7 | |
i . T) | e - “— -, I“' ——— -
R8 | R9 | R10| |R11|R12 | |R13_R14| R15_H16| | R17 R18 R19

Fig. 1: Example of an R-tree for 2D Rectangles [20]
5. Query Processing over the Learned R* tree Index

Many scholars have worked diligently to develop a variety of indexing techniques for geographical
data in order to speed up the processing of spatial queries. It has become increasingly common to
parallelize the creation of geographical indexes and the execution of queries to increase efficiency.

Due to the volume, computational complexity, and length of time that complicated geographical
searches need, support for high speed inquiries on spatial data has become crucial. Minimizing index
generation and query execution time has always been the driving force behind spatial index and
geographic query research [24]. This research trend has continued with the development of parallel
processing methods for the execution of spatial queries and spatial indexes. For quick data retrieval,
a lot of work has recently been put into indexing spatial data and performing spatial queries.

Implementation of Nearest Neighbor (NN) inquiries. By using R™ tree data structure, the index,
of every point is determined. And by getting benefits of machine learning method we learned the
indices of each spatial objects (point, line and polygon). Then the nearest neighbor query is
implemented over indices. And finally determining execution time of query processing. Using the
learned R index, for handling spatial query, we can create efficient algorithms using learned index.

6. Work Procedure
The steps outlined in this paper are divided into four groups:

1. Based on the grid file transformation approach, The First Contribution offers an efficient
transformation method for both (line and polygon) spatial objects actual datasets.
Transformation is carried out in order to make spatial object datasets with (X, y) coordinates
and reduce data complexity. As well as building a spatial data warehouse as a first step.

2. In the second step, spatial indexing for each spatial item is obtained using an R* tree.

3. The Third step utilizes several steps: In the first step, machine learning method used in order

DOI: http://dx.doi.org/10.25098/7.1.3

51

©lolSle)

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

to creating indices for each spatial objects as traditional techniques. In the second step, using
some useful libraries such as pandas, etc. for dealing with array of datasets, reading datasets,
learning indices and calculating execution time, also well-known Classifier for classification
purpose. Representing the optimal algorithm has been improved by using a prediction
technique that optimizes the learned method SLI regarding the number of points and
determining different distances. Finally, a new fast and reliable learned algorithm is
introduced.

4. Fourth step: creating models depending on three different datasets of three types of spatial
objects by using linear regression approach.

In order to be able to deal with proximity queries, and finding the specific data object an efficient
spatial indexing strategy is needed. However, none of traditional solutions (indexing) is effective,
hence specific structures are needed to deal with spatial queries like R* trees. The main advantage of
R* trees is the improved search performance, especially in the case of exact match queries. For many
computer vision, data analysis, and machine learning tasks, the k nearest neighbor analysis is a crucial
process. The procedure work of our proposed learned index is presented and described in fig (2). The
work starts from taking spatial datasets, transformation process, and getting index to each objects
elements then learned indices, after that spatial query process and getting results.

Point, line, and polygon datasets (objects latitude and longitude real datasets) are system input.
Data preparation is carried out by transforming it into one-dimensional data (1D). After that,
executing indexing spatial data and learning that indices. Following that, a spatial nearest neighbor
query is implemented, and finally the execution time of the query is calculated.

Transformation to

1D

database

Learning Spatial query
indices

Fig. 2: Proposed System Workflow
6.1. Datasets of Point, line and Polygon Spatial Objects preparation

We focused on spatial objects like points, lines, and polygons. Each object has a unique collection
of datasets, there are 1048575 records for points in our map databases, along with lines and polygons.
thus as a first step, spatial indexing utilizing the previously stated R* tree technique as well as standard
indexing is applied to the point object dataset. Following the implementation of nearest neighbor
queries, we determined the individual query execution times for R* tree. The following phase
involved learning point indexing for R* tree algorithm, implementing nearest neighbor queries, and
computing query execution times in order to compare and contrast both approaches (traditional and

DOI: http://dx.doi.org/10.25098/7.1.3
@DOEO

52

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

learned). Line and polygon with their various datasets are the research's next two goals. We also used
lines and polygons as point objects, applying and implementing the work technique.

7. Proposed Algorithm Results (R+LSI)

Testing and implementing of both algorithms reached us significant results which are query
execution time. The results are saved in separate tables (about 27 tables), for more description we
will present in brief the average execution time tables (table: 2, 3 and 4) for each spatial objects for
different sample points in different distances. Figure 4 shows an example of our work test and
implantation of both techniques, for each 25 random sample points we calculated the execution time
and also number of found nearest neighbors objects. Actually we just focused on the duration time.
As a second step, figure (5) show the tested results tables for point spatial objects. And so on for other
two spatial objects which are line and polygon. The R™ learnt spatial index algorithm (R*LSI), which
can implements on each of the 3 categories of spatial objects; points, lines, and polygons was learnt
after working with R* tree. We achieve the following noteworthy and important findings by
conducting a finding the nearest neighbor and calculating execution times for both traditional and
learnt spatial indices. Highlights from our research utilizing both conventional and newly taught
spatial indices are shown in the tables below. Execution time for queries in milliseconds (second),
computed at various distances (kilometer) for various points (25 points). Table (2) illustrates average
execution times of nearest neighbor query for both traditional and learned algorithms using R*
technique index data structure for point spatial objects respectively.

Nearest Neighbor Query Execution Time for
Distances | Number of found P (15.2,9.26)
objects Without Machine Learning | With Machine Learning

5 (km) 46 0.6477 0.0049
50 (km) 4562 0.6624 0.0030
100 (km) 18280 0.6690 0.0019
150 (km) 40602 0.6362 0.0029
200 (km) 67043 0.6531 0.0039
250 (km) 96853 0.6366 0.0033

Fig. (4): Testing and Implementing Result Table of Tradition and Learned Methods in Different
Distances

DOI: http://dx.doi.org/10.25098/7.1.3

53

©lolSle)

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Query Execution Time of 25 Different points in
Different Distances- Traditional Method

Points 5(km) | 50(km) | 100(km) | 150(km) | 200(km) | 250(km)
pl 0.6333|0.6415|0.6238|0.6139|0.6226|0.6303
p2 0.6636|0.6624|0.6529|0.6455|0.6472|0.6629
p3 0.6881|0.6969|0.6723|0.6529|0.6449|0.6439
pa 0.6658|0.6568|0.6461|0.6457|0.6491|0.6433
p5 0.6679|0.6602|0.6565|0.6522|0.6515|0.6470
p6 0.6510(0.6638(0.6329(0.6527(0.6390(0.6628
p7 0.6629|0.6505|0.6387|0.6400/0.6331|0.6491
p8 0.6665|0.6666|0.6469|0.6516|0.6387|0.6316
p9 0.6580(0.6669(0.6371(0.6533(0.6428(0.6338
p10 0.6642|0.6679|0.6389|0.6378|0.6347|0.6430
pll 0.6559|0.6516|0.6449|0.6359|0.6501|0.6414
pl2 0.6586(0.6581(0.6479(0.6592(0.6343(0.6387
p13 0.6617|0.6586|0.6445|0.6594|0.6416|0.6470
pla 0.6523|0.6741|0.6506|0.6586|0.6328|0.6579
p15 0.6466(0.6788(0.6486(0.6381(0.6481 (0.6431
pl6 0.6688|0.6703|0.6386|0.6511|0.6579|0.6356
pl7 0.6575|0.6717|0.6428|0.6464|0.6338|0.6341
p18 0.6613|0.6635|0.6463|0.6518|0.6432|0.6516
p19 0.6611|0.6725|0.6536|0.6445|0.6484|0.6337
p20 0.6598|0.6633|0.6390|0.6455|0.6651|0.6983
p21 0.6410|0.6571|0.6330|0.6551|0.6986|0.6985
p22 0.6634|0.6666|0.6449|0.6451|0.6490|0.6493
p23 0.6477|0.6624|0.6690|0.6362|0.6532|0.6366
p24 0.6623(0.6604(0.6600(0.6471(0.6474(0.6472
p25 0.6652|0.6524|0.6560|0.6414|0.6556|0.6404
Everage ET| 0.6594 0.6638 0.6466 0.6464 0.6465 0.6480

Fig. (5): Representation the Tests Table - Traditional Method

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

54

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Query Execution Time of 25 Different points in
Different Distances- Learned Method

Points 5 (km) | 50(km) | 100(km) | 150(km) | 200(km) | 250(km)
pl 0.0064 |0.0029 |0.0100 |0.0100 |0.0027 |0.0100
p2 0.0040 |0.0040 |0.0030 |0.0030 J0.0039 |0.0050
p3 0.0020 |0.0021 |0.0051 |0.0056 |0.0066 |0.0067
pa 0.0049 |0.0030 |0.0030 |0.0021 |0.0845 |0.0085
p5 0.0040 |0.0020 |0.0030 |0.0020 |0.0414 |0.0521
p6 0.0019 |0.0030 |0.0020 |0.0040 J0O0.0050 |O0.0050
p7 0.0060 |0.0032 |0.0030 |0.0030 |0.0039 |0.0040
p8 0.0050 |0.0040 |0.0040 |0.0030 |0.0040 |0.0025
p9 0.0040 |0.0030 |0.0030 |0.0030 J0.0039 |0.0040
pl0 0.0040 |0.0030 |0.0023 |0.0030 |0.0030 |0.0038
pll 0.0069 |0.0030 |0.0030 [0.0040 |0.0046 |0.0047
p12 0.0050 |0.0030 |0.0030 |0.0020 |0.0025 |0.0025
pl3 0.0060 |0.0040 |0.0030 |0.0030 |0.0041 |0.0042
pld 0.0050 |0.0040 |0.0040 |0.0040 |0.0039 |0.0027
p15 0.0050 |0.0040 |0.0030 |[0.0030 |0.0039 |0.0040
p16 0.0049 |0.0051 |0.0098 |[0.0099 |0.0089 |0.0088
pl7 0.0060 |0.0030 |0.0030 |0.0030 |0.0039 |0.0039
p18 0.0040 |0.0040 |0.0020 |0.0030 |0.0030 |0.0042
p19 0.0020 |0.0030 |0.0030 |0.0030 |0.0039 |0.0039
p20 0.0050 |0.0030 |0.0030 |0.0030 |0.0054 |0.0065
p21 0.0050 |0.0030 |0.0030 |0.0040 |0.0062 |0.0065
p22 0.0050 |0.0030 |0.0030 |0.0030 |0.0052 |0.0043
p23 0.0050 |0.0030 |0.0020 [0.0030 |0.0039 |0.0034
p24 0.0062 |0.0030 |0.0030 |0.0030 |0.0014 |0.0071
p25 0.0060 |0.0040 |0.0030 |0.0040 J0.0034 |0.0032
Everage ET| 0.0048 0.0033 0.0036 0.0037 0.0089 0.0069

Fig. (6): Representation the Tests Table - Learned Method

(The table that shows in figure (5 and 6) just related to point spatial object)

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

55

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Table (2): Traditional and Learned Index - point objects

Execution Time Average of Nearest Execution Time Average of Nearest

neighbors query neighbors query

- . . . ith Machine | ing(i d
without Machine learning(in second) wi achine learning(in second)

5km 0.65938 0.00477
50km 0.66380 0.00328
100km 0.64663 0.00356
150km 0.64644 0.00374
200km 0.64650 0.00894
250km 0.64803 0.00686

Table three illustrate nearest neighbors query’s average time to execute (second) of both
traditional and learned algorithms using R* tree technique for line spatial objects respectively.

Table (3): Traditional and Learned Index - Line object

Execution Time Average of Nearest Execution Time Average of
neighbors query Nearest neighbors query
without Machine learning(in second) [with Machine learning(in second)

5 km 0.33681 0.00509
50 km 0.34030 0.00338
100 km 0.33743 0.00334
150 km 0.34090 0.00332
200 km 0.34169 0.04259
250 km 0.34359 0.04286

Table four illustrate average execution time (s) of nearest neighbors query for both traditional
and learned algorithms using R* tree technique for polygon spatial objects respectively.

Table (4): Traditional and Learned Index - Polygon object

Execution Time Average of Nearest Execution Time Average of Nearest
neighbors query neighbors query
without Machine learning(in second) | without Machine learning(in second)
5km 0.01459 0.00357
50 km 0.02087 0.00266
100 km 0.02488 0.00250
150 km 0.03953 0.00253
200 km 0.05455 0.02679
250 km 0.06282 0.03239

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

56

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

N Sicu S“",f‘

Graph of different query execution time in R* tree technique for point spatial object dataset (real
dataset) in various distances in kilometer (km) clearly presented in figure (7) for traditional and
learned algorithms respectively.

POINT OBJECT

0.80000
0.70000
0.60000
0.50000
0.40000
0.30000
0.20000
0.10000

0.00000 ——————¢
5KM 50KM100KML50KM200KNM250KM

TIME

= B -Traditional Index

=g | earned Index

DISTANCE

Fig. (7): Traditional and Average Execution Time of Point object

Figure (8) for traditional and learnt algorithms, respectively, clearly display the graph of varied
query execution times in R* tree approach for line spatial object datasets (real dataset) in various
distances in kilometer

LINE OBJECT

0.40000

0.39000 -
—

0.38000 ’

0.37000

0.36000 /

0.35000
—l = Traditional
0.34000 M——"‘

0.33000 =——@— |earned

0.32000

0.31000
5 KM 50 KM 100 150 200 250
KM KM KM KM

TIME

DISTANCE

Fig. (8): Traditional and Average Execution Time of Line object

Graph of different query execution time in R* tree technique for polygon spatial object dataset (real
dataset) in various distances in kilometer (km) clearly presented in figure (9) for traditional and
learned algorithms respectively.

DOI: http://dx.doi.org/10.25098/7.1.3
@DOEO

57

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

POLYGON OBIJECT
0.07000
0.06000
0.05000
0.04000

TIME

0.03000 Learned
0.02000 Tradition(ms)
0.01000

0.00000
5KM 50 KM 100 KM 150 KM 200 KM 250 KM

DISTANCE

Fig. (9): Traditional and Learned Average Execution Time of Polygon object
8. Evaluation Criteria

The main goal of our study is comparing two learnt and traditional spatial indexing algorithms.
Utilizing execution time in millisecond (s) as a performance metric. In the first step of work using R*
data structure in case of getting index for each spatial objects datasets point, line and polygon in both
traditional and learned indexing methods as second step. Then implementing nearest neighbors query
for 25 different points on all various spatial object elements, point, line and polygon. And calculating
execution time in both methods for each spatial data type in order to evaluate query performance of
mentioned methods. Also various performance evaluation indicators were selected for the assessment
of the model including coefficient of determination (R?), and mean square error (MSE), their values
for point, line and polygon for R* LSI are shown table (5):

Table (5): MSE and R? Values of R*LSI

NNQ - R” LSI
Spatial Objects | Mean Square Error(MSE) R’
point 1.9322 0.9981
line 2.1414 0.8877
polygon 2.8065 0.8889

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

58

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

9. Conclusion

This study presents the evaluation between two different indexing methods, traditional and
learning, and implementing nearest neighbor query in both algorithms. Using real datasets of point,
line and polygon spatial objects. Our work has proved that spatial indexing based on machine
learning, (R* Spatial Learned Index) has super advantage over traditional in term of less query
execution time including all spatial objects of a kind. We have reached these conclusions, objects
indexing with R* tree has an advantage over Quadtree and Hilbert curve (our previous work) [25],
because of its less query execution time in traditional method also learned index. The performance of
the learned models was challenged using both R2, MSE measurements. We have demonstrated that
by leveraging the distribution of the data being indexed, trained indexes may offer important
advantages.

10. Future Work

As a future work, it would be of high interest to compare the performance of this solution with
different spatial index. Also, further improvement and investigation on algorithm presented in this
paper should be done. First of all, investigating if there are other features of Z-order-curve, apart from
Z-value jumps dependent on y values, that could be used to improve accuracy. Secondly it may be
possible to introduce one more layer of machine learning models, learned on the errors made by linear
regressions.

Reference

1. Giting, R.H., An introduction to spatial database systems. the VLDB Journal, 1994. 3(4): p. 357-
399.

2. Jia, L., etal., Efficient 3D Hilbert Curve Encoding and Decoding Algorithms. Chinese Journal of
Electronics, 2022. 31(2): p. 277-284.

3. Comer, D., Ubiquitous B-tree. ACM Computing Surveys (CSUR), 1979. 11(2): p. 121-137.

4. Groh, F., etal., Ggnn: Graph-based gpu nearest neighbor search. IEEE Transactions on Big Data,
2022.

5. Liu, Y., et al., Research on Hybrid Index Based on 3D Multi-Level Adaptive Grid and R+ Tree.
IEEE Access, 2021. 9: p. 146010-146022.

6. Gu, T., et al., A Reinforcement Learning Based R-Tree for Spatial Data Indexing in Dynamic
Environments. arXiv preprint arXiv:2103.04541, 2021.

7. Sellis, T., N. Roussopoulos, and C. Faloutsos, The R+-Tree: A Dynamic Index for Multi-
Dimensional Objects. 1987.

8. Bohm, C., S. Berchtold, and D.A. Keim, Searching in high-dimensional spaces: Index structures
for improving the performance of multimedia databases. ACM Computing Surveys (CSUR),
2001. 33(3): p. 322-373.

9. Samet, H., The quadtree and related hierarchical data structures. ACM Computing Surveys
(CSUR), 1984. 16(2): p. 187-260.

10. Rosenberg, J.B., Geographical data structures compared: A study of data structures supporting
region queries. IEEE transactions on computer-aided design of integrated circuits and systems,
1985. 4(1): p. 53-67.

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

59

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

The Scientific Journal of Cihan University — Sulaimaniya PP: 46-60
Volume (7), Issue (1), June 2023
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

Hinrichs, K. and J. Nievergelt, The grid file: a data structure designed to support proximity
queries on spatial objects. ETH Eidgendssische Technische Hochschule Zirich, Institut fur
Informatik, 1983. 54.

Kamel, I. and C. Faloutsos. On packing R-trees. in Proceedings of the second international
conference on Information and knowledge management. 1993.

Kamel, I. and C. Faloutsos, Hilbert R-tree: An improved R-tree using fractals. 1993.

Zhang, L., et al., Query method for nearest region of spatial line segment based on Hilbert curve
grid. International Journal of Innovative Computing Information and Control, 2019. 15(4): p.
1287-1307.

Triebel, R., P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor terrain mapping and
loop closing. in 2006 IEEE/RSJ international conference on intelligent robots and systems. 2006.
IEEE.

Zhang, H., Y. Dong, and D. Xu, Accelerating exact nearest neighbor search in high dimensional
Euclidean space via block vectors. International Journal of Intelligent Systems, 2022. 37(2): p.
1697-1722.

Tian, Y., et al., A Learned Index for Exact Similarity Search in Metric Spaces. arXiv preprint
arXiv:2204.10028, 2022.

Guttman, A. R-trees: A dynamic index structure for spatial searching. in Proceedings of the 1984
ACM SIGMOD international conference on Management of data. 1984.

Nathan, V., et al. Learning multi-dimensional indexes. in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 2020.

Ding, J., et al. ALEX: an updatable adaptive learned index. in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 2020.

Janiesch, C., P. Zschech, and K. Heinrich, Machine learning and deep learning. Electronic
Markets, 2021. 31(3): p. 685-695.

Kraska, T., et al. The case for learned index structures. in Proceedings of the 2018 international
conference on management of data. 2018.

Kang, M.-A. and K.-J. Li. Query processing methods for connectivity search in visual databases
using R+-tree. in Working Conference on Visual Database Systems. 1995. Springer.

Singh, H. and S. Bawa, A survey of traditional and mapreducebased spatial query processing
approaches. ACM SIGMOD Record, 2017. 46(2): p. 18-29.

Najeeb, G.M. and N.A. Ali, In the Context of Spatial Data, a Comparison between Learning and
Traditional Indexing. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology,
2022. 54(5): p. 1-8.

DOI: http://dx.doi.org/10.25098/7.1.3
@ISO

60

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/7.1.3

