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Abstract:

The aim of this paper is to propose a numerical approximation method to solve nonlinear Volterra
integral equations of the second kind using Haar wavelets and multiple-scale Pascal polynomial
methods. These methods are specifically derived for nonlinear problems. In this numerical
approximation, we do not need to use numerical integration which is one of the advantages of our
proposed method. Numerical examples are tested to demonstrate the validity of the method and the
efficiency of the method is confirmed.
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1. Introduction

In recent decades Integral Equations (IEs) arose in many fields, especially in fluid mechanics,
biological models, solid-state physics, kinetics in chemistry, etc. Consider the Volterra integral
equation (VIE) of the second kind given by:

ulx) =f(x) + fx k(x, t,u(t))dt,x €1l = [a,b] (D

Where u: [a, b] = R is the unknown function, k:T X R - R with T = {(x,t):a <t < x < b}
and f:[a, b] — R are the given functions. To obtain u(x), we have supposed that the equation (1)
has unique solution. It has well known, that diffusion problem, electroelastic, heat conduction, and
many other areas of science give place to nonlinear IEs [1,2,3]. In most cases of equation (1),
analytical solutions are either difficult to find or do not exist, so numerical methods are needed for
finding the approximated solution of nonlinear IEs. Lately, many researchers had found solutions for
nonlinear VolterraFredholm integral equations by different methods. In [4,5,6,7] the Taylor
collocation method was intended for finding a solution for the nonlinear Volterra-Fredholm IE's in
terms of Taylor polynomials. The method changed the IE into an equation of matrix by the collocation
points. EI-Ameen and El-Kady in [8] proposed a direct method that the Volterra-Fredholm
Hammerstein reformulated by a Fredholm IE and then it is converted to an integral equation of
equation (1). Aziz and Sirajul-Islam [9] have used the special characteristics of Haar wavelets in one
and two dimensions and they can calculate Haar constants without even solving the obtained
equation’s system. Sirajul-Islam et al. in [10] proposed a novel technique established on Haar
wavelets that the equation (1) expressed by a (2M)? system of nonlinear equations and then the
systems have been solved by applying Newton's or Broyden's method. Mashayekhi et al.[11] solved
nonlinear mixed VolterraFredholm IEs by using hybrid functions that consist of Bernoulli polynomial
and block-pulse functions. Deniz in [12] has used a modification of the optimal perturbation iteration
method to solve the nonlinear VIEs. Next, Linear and nonlinear IEs have been solved by Legendre
multi-wavelets collocation method in [13]. Sathar et al. [14] presented a numerical technique based
on a mix of Haar Wavelets Methods and Newton-Kantorovich to solve second kind nonlinear
Volterra-Fredholm IEs. Almasoodi et al. [15] constructed a method from a group of general linear
methods and a special quadrature rule from natural Runge-Kutta methods to solve VIESs. The two-
point Taylor formula, which is a special case of the Hermite interpolation, was presented by
Karamollahi et al. [16] as a numerical approximation approach. Herndndez-Verén et al. [17]
approximated the solution of Hammetsteintype of nonlinear IEs when the non separable property of
the kernel was supposed. Most of the above authors have used two methods for solving equation (1)
or its similar. In our work, we construct a novel approach to compute the solution of equation (1)
numerically from Haar wavelets method approximating u(x) and multiple-scale Pascal polynomial
for expanding the k(x,t,u(t)). Multiple-scale Pascal polynomial was used for solving inverse
Cauchy problems in [18,19] and Haar Wavelete is an easy and simple method for approximating the
exact solutions of a problem. An advantage of our technique is do not need to apply numerical
integration and it is easy in calculation.
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This paper is organized as:
2. Establishing Haar Wavelets and Polynomial Expansion

In this section we will explain how use we the Haar wavelets and polynomial Expansion.
2.1. Haar Wavelets

Wavelet family (lpj,i(x))jEN ez is a subfamily of the Hilbert space L?(R) which is orthonormal,

with property that all wavelet family’s functions are generated via a fixed function h noun as mother
wavelet out of translations and dilations. The wavelet family holds the following condition:

Y;i(x) = Z%h(zfx — ).

The Haar wavelet family defined on the interval [0,1) contains the following mappings:

1 for0<x<1
hy (x) = {O elsewhere,
and
1 foras<x<p
h;(x) ={—1 forf <x<y
0 elsewhere
where

k+0.5 k+1 .
, sz;mzzf,j=0,1,...,k=0,1,...,m—1

_k —
a_m’ﬁ_ m

Haar wavelets are characterized by two numbers: j € Z refers to the wavelet’s level, k is the
parameter’s translation. The i, m and k’s relation defined as: i = m + k + 1. The scaling mapping is
hi(x) and the mother wavelet is h;(x) for Haar wavelet’s family.

We can write any function u(x) € L?(R) defined on [0,1) of a form of an infinite sum of Haar
wavelets as follows:

u(x) = Y21 ajhi(x) 2
Where
a; S R, Vi.

For approximation aim, the series (2) is truncated by considering a greatest value J of j € Z ;
dilation parameter, as:

u(x) = L% aghi(x) ©)

The integer J is then called the resolution’s maximum level. We define M = 2/ which also is an
integer.
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To calculate the unknown coefficients a;, we have to find the collocation points x,, = p;—;'s,p =

1,2,...,2M. Now, by substituting the collocation points x,, 's into equation (3), we get a 2ZM X 2M
linear system of equations:

u(xp) =¥ aihi(xp)» p=12..2M (4)
Which its matrix form is:
u(x,) = H'a,

where H is an 2M x 2M with h;; = h;(x;) and the coefficients, a = [ay, a,, ..., azp]°. While the
symmetric Haar matrix His with only elements 1,—1 or 0

2.2. Polynomial Expansion

an ill-posed problem like polynomial interpolation makes the higher-order polynomials
interpolation not be an easy task to numerical computation. So to over come those difficulties, Liu
and Atluri [22] have offered a special length into polynomials expansion in higher orders, which made
the accuracy of the numerical results better the for the applications to solve some linear problems of
ill-posed ones. In this subsection we use the multiple-scale expansion technique by high-order
polynomials, which proposed by [18, 19] for solving inverse Cauchy problems and elliptic equations
and can over come the ill-condition problems behavior which mentioned above.

For a test solution of nonlinear integral equations (NIEs) we use expansion of polynomial which
is unpretentious and simple to conclude the wanted linear algebraic equations (LAES) to set the
coefficients expansion after an appropriate collocation of points in the area. However, it is rare.

used like a main way for solving nonlinear IEs, which usually the LAEs results major difficulty is
that they are of high ill-condition problems. How to reducing the number of the conditions in the
linear system is the important issue in applying expansion of polynomials method to solve the
nonlinear IEs.

Now, we can regard the nonlinear part k(x, t, u(t)) as a two variables function can be written as:
k(xr t: u(t)) = ?=1 ;..:1 bijxi_jtj_l (5)

n(n+1)

Where the n, = .

equation (5) isn — 1.

coefficents b;; are to be determined. Note that the polynomial’s order in
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The equation (5) formulated from the elements in polynomial matrix

[1 v y: . ymt ™
X X xy? .o oxy™t o xy™
y y y y
|x2  x2y x%2y% .. xZym-l xzym | (6)
Lcm xMy xMy? . xMym 1l xm y

which have been used in expanding k(x, t,u(t)). If the entries are tied up in left-upper triangle,
then the expansion is called Pascal triangle expansion.

1
x y
x* xy y*
x? x*y xy? y? )
x4 X3y x2y2 Xy3 y4
x5 x4y X3y2 X2y3 xy4- y5

When multiply each element of equation (7) by a scalar we get equation (5); which is known
multiple scale Pascal triangle.

3. Formulation of a Linear Systems

To get a good solution of the nonlinear Fredholm, nonlinear Volterra integral equations of the
second kind with a small error as much as possible; equation (1), via Haar wavelet to approximate
u(x) and the multiple scale Pascal triangle expansion to approimate k(x, t,u(t)) we need:

3.1. Nonlinear Volterra integral Equations

If the Nonlinear Volterra integral equation is supposed as

u(x) = f(0) + [ k(xtu()dt (8)
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then the approximation formula for equation (8) is:

2M
z a;h; (x) _f(x)+f Z z byxiIdt
i=1 =1 j=
n n i ,
X i a’
=f(x)+z buT—Z Z by~ =
i=1 j=1 i=1 j=1
n
= fG0)+ ) (et — ™)
i=1
n
= f@+) G 9
i=0
Where
n
X
C; = —
=/
>, ()
dp = z bjj ==
=
n—i+1 .
@
d; = bn-j+1ym-j-i+y T 2<i<n—1,
=1 g
d, =byXa
and
CO = dll
Ci = Ci—di+1i = 1,2,...,7’1—1,
C, =cp

We Select 2M collocation points on the interval I = [a, b], we obtain a system of 2M equations
with 2M + n + 1 coefficients. It is suitable to write the system of equations in form of matrix- vector
product as:

AC=f (10)

Where A = [H _L]ZMX2M+TL+1'C == [al,az, ...,aZM, Co, Cl,...,Cn]t, and f =
[f (x1), f(x3), ..., f(x2p)]. To obtain the values of coefficients we can write equation (10) as:

DC =F (11)

Where D = A'A and F = A*f. Since linear system equations (11) has a normal matrix D of 2M +
n + 1 equations and we can use conjugate gradiant method’s algorithm (CGM) to find C.
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Remark 1. There are some paper [9,14,20] have used the concept of Haar wavelete for the nonlinear
part and then have used the Newton method's for two variables to find all coefficients given. And
they did it without solving the system of equations which computing them needs so much time for
large values of M. But for finiding each cofficient they need Newton method formula to calculate the
coefficients. Some of them as in [20] did not involved numerical integration but [9,14] have
approximated the integral with the Haar wavelet basis and performed exact integration of Haar
functions.

4.Numerical Examples

In this section we apply our method to nonlinear Fredholm and nonlinear Volterra integral
equations. Matlab (R2019a) was used (in a computer which has a RAM of 2 GB and CPU of 2GHz )
to calculate each of these examples.

Example 1. We have the following equation [14, 21]:

u(x) = —x2 +3(2V2 - D) + 2+ [ xtfu(0)dt.

The

exact

solution

The computer simulation gave the following table

Table 1: Maximum absolute error for nonlinear Fredholm integral equation (12)

(12)

u(x) = 2 — x2.

n=2 n=3 n=4 n=>5

M =21 0.343885790515963  0.349821914603896  0.350564219639614 0.349765931194146
M = 2% 0.156791030216482  0.249828480856119  0.251227527246668 0.252200402730466
M =23 0.083262680959299  0.124938964843750 0.125019765253166 0.125253029100295
M = 2% 0.047376876668156  0.062492370605469  0.062492370605469 0.062497161939197
M =25 0.025951710465165 0.031249046325684  0.031249046325684 0.031249046325684
M =26 0.013723266175552  0.015624880790710  0.015624880790710 0.015624880790710
M =27 0.007080376623809 0.007812485098839  0.007812485098839 0.007812485098839
M = 28 0.003599695214012 0.003906248137355 ).003906248137355 0.003906248137355
M =22 0.001815389762843 0.001953124767169 0.001953124767169 0.001953124767169
M 0.000911664432146  0.000976562470896  0.000976562470896 0.000976562470896
_ 910

M 0.000456828960097  0.000488281246362  0.000488281246362 0.000488281246362
- 211

M 0.000277671294557  0.000244140624545  0.000244140624545 0.000244140624545
— 212

Form table (1), it is evident that the solution's maximum absolute error (norm of 'inf' have been
used) decreases significantly when the collocation points number increases. The maximum absolute
error of exhibits oscillating behavior when the values of n are increased.

Example 2. Let’s solve following equation [9, 21]:

u(x) = sin(mx) + %fol cos(mx)sin(mt) (u(t))3dt

(13)
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The exact solution is u(x) = sin(mx) + 20_;/m cos(mx).

The computer simulation gives the following table:

Table 2: Maximum absolute error for nonlinear Fredholm integral equation (13)

n=2 n=3 n=4 n=>5

M =21 0.027135262687034 0.027105152065990  0.027067302526345 0.027043556249940
M = 2% 0.014957331218283  0.033633463530456  0.033633463530456 0.033633463530456
M =23 0.011382230925490 0.010897184532724  0.010893028169126 0.010890308195593
M = 2* 0.011534360997371  0.004946910438464  0.005987365417992 0.006586350715125
M =25 0.009181688396928 0.004136424687560  0.004793507426296 0.005107002498647
M = 2° 0.006213380871455  0.003138895590868  0.003411531167843 0.003465215204366
M =27 0.003754604372783  0.002056171998369  0.002082605670479 0.001990629586698
M =28 0.002105758555405 0.001183835837244  0.001102518902069 0.000966165949870
M =2° 0.001126145057476  0.000613806804031  0.000507730368230 0.000501444391521
M 0.000584717623165  0.000288759531196  0.000270543142096 0.000297722613972
— 210

M 0.000298347016838  0.000136446404560  0.000159600603741 0.000175159095136
— 211

The maximum absolute error of the solution of equation (13) in the table (2) decreases significantly
when the collocation points number increases. When the value of n is raised, the solution's error

displays fluctuating behavior.

Example 3. For a nonlinear Volterra integral equation [9, 21]:

u(x) == —sexp(—2x) — [7 (u(t)? +u(t))dt

The exact solution is u(x) = exp(—x).

(14)
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The computer simulation of the present method gives the following table:
Table 3: The error obtained for nonlinear Volterra integral equation (14) in the present
method
n=2 n=3 n=4 n=>5

M 0.108509877465090 0.103709123542693 0.101362910779164 0.100105593017332
=21
M 0.117426632851684 0.117426632851684 0.117426632851684 0.117426632851684
=22
M 0.060577077154772  0.060577077154772  0.060577077154772 0.060577077154772
=23
M 0.030765513656419  0.030765513656419  0.030765513656419 0.030765513656419
=24
M 0.015503405285316  0.015503405285316  0.015503405285316 0.015503405285316
=25
M 0.007782041948985 0.007782041948985 0.007782041948985 0.007782041948985
= 26
M 0.003898628051201  0.003898628051201 0.003898628051201 0.003898628051201
=27
M 0.001951218582387  0.001951218582387 0.001951218582387 0.001951218582387
= 28
M 0.000976085779238  0.000976085779238 0.000976085779238 0.000976085779238
=29
M 0.000488162055261 0.000488162055261  0.000488162055261 0.000488162055261
— 210
M 0.000244110824497  0.000244110824497  0.000244110824497 0.000244110824497
— 211

We can observe that as collocation points number rises, the solution’s greatest absolute error of
equation (14) in the table (3) goes way down. When the value of n is increased, the error of the
solution reflects the constant behavior.

Example 4. Consider the nonlinear Volterra integral equation [9]:

u(x) = () + [, xt?(u()?de

Where

(15)
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—(1+11+2 13+2 4)1 +1 +1(+4)l + 1)) 2+5 3
f(x) = g t3 3x 5" n(x+1) 3 x+x*)(n(x + 1)) g 18x
2
4
57X
The exact solution is u(x) = In(1 + x).
The computer simulation error of equation (15) gives the following table:
Table 4: The error obtained for equation (15).
n=2 n=3 n=4 n=>5
M =21 0.109032170555515 0.115683087135479  0.119827503992651 0.122524774308628
M =22 0.066901594948058 0.073074597390479  0.076648978686386 0.078860174648933
M = 23 0.041423359274478  0.044277602752303  0.045761560806697 0.046515477758269
M = 2* 0.023319023180795 0.024312773007412  0.024624559002807 0.024606129036641
M = 25 0.012314390600286  0.012492783217156  0.012377261688532 0.012163921692160
M = 26 0.006244539841593 0.006161986982323  0.005999194390697 0.005837142853358
M =27 0.003085824086050 0.002981586084752  0.002880790935835 0.002799006888463
M = 28 0.001504248668365 0.001440926360686  0.001393846496799 0.001360162908626
M = 2° 0.000731815165837 0.000702262902534  0.000682952501778 0.000670971938540
M 0.000358077171932  0.000345611337144  0.000338271586585 0.000334725478427
— 210
M 0.000176535827489  0.000171343428942  0.000168775883700 0.000167979544551
— 211

We can observe that as collocation points number rises, so does the solution’s maximum absolute
error of in the table (4). When the value of n is increased for M = 2%,i = 1,2,3,4,5, the solution's
error increases, but when i = 6,7, ...,11, the solution's error decreases.

5. Conclusion

Our method’s major benefits are its simplicity. The approach is extremely useful to solve nonlinear
integral equations. In all examples in section (4), by increasing collocation points number the
solution’s error decreases, the suggested technique has an advantage over the majority of the
references cited in this study in that it does not require numerical integration and does not include any
additional algorithms to solve the nonlinear form in the equation (1). according to the runtime error
our method is better than the runtime in [9,14,20,21] when the value M = 2%,i = 7,8, ...,11, these
approaches will be quite slow to achieve the approximation solution.
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