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Abstract: 
 

The aim of this paper is to propose a numerical approximation method to solve nonlinear Volterra 

integral equations of the second kind using Haar wavelets and multiple-scale Pascal polynomial 

methods. These methods are specifically derived for nonlinear problems. In this numerical 

approximation, we do not need to use numerical integration which is one of the advantages of our 

proposed method. Numerical examples are tested to demonstrate the validity of the method and the 

efficiency of the method is confirmed. 
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 الملخص:
 

 باستخدام الثاني النوع من اللاخطية التكاملية فولتيرا معادلات لحل عددي تقريب طريقة اقتراح هو  الاطروحة هذه  من الهدف

 إلى نحتاج لا ،العددي التقريب هذا في  .الخطية غير للمشاكل خصيصا مشتقة الأساليب هذه  .المقاييس متعددة وباسكال هار موجات

 الطريقة. كفاءة تأكيد تم صدقها لإثبات العددية الأمثلة اختبار يتم  .المقترحة طريقتنا مزايا من واحداً يعد الذي العددي التكامل استخدام
 

 2020معادلات فولتيرا غير الخطية ، طريقة هار المويجات ، طريقة المقاييس المتعددة ، باسكال متعدد الحدود  : الكليمات المفتاحية

MSC: 45G10 ،45D05 ،65T60 ،34E13 ،65R20 ،65D15 
 

 :پوختە
 

ئامانجی ئەم توێژينەوەيە پێشنيارکردنی شێوازێکی نزيکبوونەوەی ژمارەييە بۆ چارەسەرکردنی هاوکێشە ناهێڵييە تەواوکارييەکانی 

ڕێگايانە بە تايبەتی بۆ کێشە ناهێڵييەکان ئەم  لەکانی هار و پاسکالی فرە پێوەر.ڤۆڵتێرا لە جۆری دووەم بە بەکارهێنانی ڕێگەی شەپۆ

کە لە باشييەکانی ڕێگەکەی نزيکبوونەوەی ژمارەييەدا پێويست ناکات تەواوکاريی ژمارەيی بەکاربهێنين کە يەکێ وەرگيراون.  لەم

پشتڕاست ڕێگەکە و کارايی شێوازەکە چوستی ڕێگەکەش  نموونەی ژمارەيی تاقی دەکرێنەوە بۆ نيشاندانی ڕەوايی و ئێمە.

 دەکرێتەوە.
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1. Introduction 
 

In recent decades Integral Equations (IEs) arose in many fields, especially in fluid mechanics, 

biological models, solid-state physics, kinetics in chemistry, etc. Consider the Volterra integral 

equation (VIE) of the second kind given by: 
 

𝑢(𝑥) = 𝑓(𝑥) + ∫  
𝑥

𝑎

𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡, 𝑥 ∈ 𝐼 ≔ [𝑎, 𝑏]                                 (1) 

Where 𝑢: [𝑎, 𝑏] → ℝ is the unknown function, 𝑘: 𝑇 × ℝ → ℝ with 𝑇 = {(𝑥, 𝑡): 𝑎 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏} 

and 𝑓: [𝑎, 𝑏] → ℝ are the given functions. To obtain 𝑢(𝑥), we have supposed that the equation (1) 

has unique solution. It has well known, that diffusion problem, electroelastic, heat conduction, and 

many other areas of science give place to nonlinear IEs [1,2,3]. In most cases of equation (1), 

analytical solutions are either difficult to find or do not exist, so numerical methods are needed for 

finding the approximated solution of nonlinear IEs. Lately, many researchers had found solutions for 

nonlinear VolterraFredholm integral equations by different methods. In [4,5,6,7] the Taylor 

collocation method was intended for finding a solution for the nonlinear Volterra-Fredholm IE's in 

terms of Taylor polynomials. The method changed the IE into an equation of matrix by the collocation 

points. El-Ameen and El-Kady in [8] proposed a direct method that the Volterra-Fredholm 

Hammerstein reformulated by a Fredholm IE and then it is converted to an integral equation of 

equation (1). Aziz and Sirajul-Islam [9] have used the special characteristics of Haar wavelets in one 

and two dimensions and they can calculate Haar constants without even solving the obtained 

equation’s system. Sirajul-Islam et al. in [10] proposed a novel technique established on Haar 

wavelets that the equation (1) expressed by a (2𝑀)2 system of nonlinear equations and then the 

systems have been solved by applying Newton's or Broyden's method. Mashayekhi et al.[11] solved 

nonlinear mixed VolterraFredholm IEs by using hybrid functions that consist of Bernoulli polynomial 

and block-pulse functions. Deniz in [12] has used a modification of the optimal perturbation iteration 

method to solve the nonlinear VIEs. Next, Linear and nonlinear IEs have been solved by Legendre 

multi-wavelets collocation method in [13]. Sathar et al. [14] presented a numerical technique based 

on a mix of Haar Wavelets Methods and Newton-Kantorovich to solve second kind nonlinear 

Volterra-Fredholm IEs. Almasoodi et al. [15] constructed a method from a group of general linear 

methods and a special quadrature rule from natural Runge-Kutta methods to solve VIEs. The two-

point Taylor formula, which is a special case of the Hermite interpolation, was presented by 

Karamollahi et al. [16] as a numerical approximation approach. Hernández-Verón et al. [17] 

approximated the solution of Hammetsteintype of nonlinear IEs when the non separable property of 

the kernel was supposed. Most of the above authors have used two methods for solving equation (1) 

or its similar. In our work, we construct a novel approach to compute the solution of equation (1) 

numerically from Haar wavelets method approximating 𝑢(𝑥) and multiple-scale Pascal polynomial 

for expanding the 𝑘(𝑥, 𝑡, 𝑢(𝑡)). Multiple-scale Pascal polynomial was used for solving inverse 

Cauchy problems in [18,19] and Haar Wavelete is an easy and simple method for approximating the 

exact solutions of a problem. An advantage of our technique is do not need to apply numerical 

integration and it is easy in calculation. 
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This paper is organized as: 
 

2. Establishing Haar Wavelets and Polynomial Expansion 
 

    In this section we will explain how use we the Haar wavelets and polynomial Expansion. 
 

2.1. Haar Wavelets 
 

    Wavelet family (𝜓𝑗,𝑖(𝑥))
𝑗∈ℕ,𝑖∈ℤ

 is a subfamily of the Hilbert space 𝐿2(ℝ) which is orthonormal, 

with property that all wavelet family’s functions are generated via a fixed function ℎ noun as mother 

wavelet out of translations and dilations. The wavelet family holds the following condition: 
 

𝜓𝑗,𝑖(𝑥) = 2
𝑖
2ℎ(2𝑗𝑥 − 𝑖). 

 

    The Haar wavelet family defined on the interval [0,1) contains the following mappings: 
 

ℎ1(𝑥) = {
1  for 0 ≤ 𝑥 < 1
0  elsewhere, 

 

 

and 

ℎ𝑖(𝑥) = {
1  for 𝛼 ≤ 𝑥 < 𝛽

−1  for 𝛽 ≤ 𝑥 < 𝛾
0  elsewhere 

 

where 

𝛼 =
𝑘

𝑚
,  𝛽 =

𝑘 + 0.5

𝑚
,  𝛾 =

𝑘 + 1

𝑚
;𝑚 = 2𝑗 , 𝑗 = 0,1, … , 𝑘 = 0,1, … ,𝑚 − 1 

 

Haar wavelets are characterized by two numbers: 𝑗 ∈ ℤ refers to the wavelet’s level, 𝑘 is the 

parameter’s translation. The 𝑖, 𝑚 and 𝑘’s relation defined as: 𝑖 = 𝑚 + 𝑘 + 1. The scaling mapping is 

ℎ1(𝑥) and the mother wavelet is ℎ𝑖(𝑥) for Haar wavelet’s family. 
 

We can write any function 𝑢(𝑥) ∈ 𝐿2(ℝ) defined on [0,1) of a form of an infinite sum of Haar 

wavelets as follows: 
 

𝑢(𝑥) = ∑  ∞
𝑖=1 𝑎𝑖ℎ𝑖(𝑥)                                                    (2) 

Where 
 

 𝑎𝑖 ∈ ℝ, ∀𝑖. 
 

For approximation aim, the series (2) is truncated by considering a greatest value 𝐽 of 𝑗 ∈ ℤ ; 

dilation parameter, as: 
 

𝑢(𝑥) = ∑  2𝑀
𝑖=1 𝑎𝑖ℎ𝑖(𝑥)                                                    (3) 

The integer 𝐽 is then called the resolution’s maximum level. We define 𝑀 = 2𝐽 which also is an 

integer. 
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To calculate the unknown coefficients 𝑎𝑖, we have to find the collocation points 𝑥𝑝 =
𝑝−0.5

2𝑀
, 𝑝 =

1,2, … ,2𝑀. Now, by substituting the collocation points 𝑥𝑝 's into equation (3), we get a 2𝑀 × 2𝑀 

linear system of equations: 
 

𝑢(𝑥𝑝) = ∑  2𝑀
𝑖=1 𝑎𝑖ℎ𝑖(𝑥𝑝),  𝑝 = 1,2, … ,2𝑀                                    (4) 

 

Which its matrix form is: 
 

𝑢(𝑥𝑝) = 𝐻𝑡𝑎, 
 

where 𝐻 is an 2𝑀 × 2𝑀 with ℎ𝑖𝑗 = ℎ𝑖(𝑥𝑗) and the coefficients, 𝑎 = [𝑎1, 𝑎2, … , 𝑎2𝑀]𝑡. while the 

symmetric Haar matrix 𝐻is with only elements 1,−1 or 0 
 

2.2. Polynomial Expansion 
 

    an ill-posed problem like polynomial interpolation makes the higher-order polynomials 

interpolation not be an easy task to numerical computation. So to over come those difficulties, Liu 

and Atluri [22] have offered a special length into polynomials expansion in higher orders, which made 

the accuracy of the numerical results better the for the applications to solve some linear problems of 

ill-posed ones. In this subsection we use the multiple-scale expansion technique by high-order 

polynomials, which proposed by [18, 19] for solving inverse Cauchy problems and elliptic equations 

and can over come the ill-condition problems behavior which mentioned above. 
 

For a test solution of nonlinear integral equations (NIEs) we use expansion of polynomial which 

is unpretentious and simple to conclude the wanted linear algebraic equations (LAEs) to set the 

coefficients expansion after an appropriate collocation of points in the area. However, it is rare. 
 

used like a main way for solving nonlinear IEs, which usually the LAEs results major difficulty is 

that they are of high ill-condition problems. How to reducing the number of the conditions in the 

linear system is the important issue in applying expansion of polynomials method to solve the 

nonlinear IEs. 
 

Now, we can regard the nonlinear part 𝑘(𝑥, 𝑡, 𝑢(𝑡)) as a two variables function can be written as: 
 

𝑘(𝑥, 𝑡, 𝑢(𝑡)) = ∑  𝑛
𝑖=1 ∑  𝑖

𝑗=1 𝑏𝑖𝑗𝑥
𝑖−𝑗𝑡𝑗−1                                          (5) 

 

Where the 𝑛1 =
𝑛(𝑛+1)

2
 coefficents 𝑏𝑖𝑗 are to be determined. Note that the polynomial’s order in 

equation (5) is 𝑛 − 1.  
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The equation (5) formulated from the elements in polynomial matrix 
 

[
 
 
 
 

1 𝑦 𝑦2 … 𝑦𝑚−1 𝑦𝑚

𝑥 𝑥𝑦 𝑥𝑦2 … 𝑥𝑦𝑚−1 𝑥𝑦𝑚

𝑥2 𝑥2𝑦 𝑥2𝑦2 … 𝑥2𝑦𝑚−1 𝑥2𝑦𝑚

⋮ ⋮ ⋮ … ⋮ ⋮
𝑥𝑚 𝑥𝑚𝑦 𝑥𝑚𝑦2 … 𝑥𝑚𝑦𝑚−1 𝑥𝑚𝑦𝑚]

 
 
 
 

                                 (6) 

which have been used in expanding 𝑘(𝑥, 𝑡, 𝑢(𝑡)). If the entries are tied up in left-upper triangle, 

then the expansion is called Pascal triangle expansion. 

1 

𝑥                     𝑦 

𝑥2                           𝑥𝑦             𝑦2  

𝑥3                           𝑥2𝑦                           𝑥𝑦2                                  𝑦3                                    (7) 

𝑥4                           𝑥3𝑦                      𝑥2𝑦2                             x𝑦3            𝑦4 

𝑥5             𝑥4𝑦                               𝑥3𝑦2                           𝑥2𝑦3                𝑥𝑦4           𝑦5 

              …                …                    …                                   …                             …                   …               

… 

When multiply each element of equation (7) by a scalar we get equation (5); which is known 

multiple scale Pascal triangle. 
 

3. Formulation of a Linear Systems 
 

    To get a good solution of the nonlinear Fredholm, nonlinear Volterra integral equations of the 

second kind with a small error as much as possible; equation (1), via Haar wavelet to approximate 

𝑢(𝑥) and the multiple scale Pascal triangle expansion to approimate 𝑘(𝑥, 𝑡, 𝑢(𝑡)) we need: 
 

3.1. Nonlinear Volterra integral Equations 
 

    If the Nonlinear Volterra integral equation is supposed as 
 

𝑢(𝑥) = 𝑓(𝑥) + ∫  
𝑥

𝑎
𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡                                                           (8) 
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then the approximation formula for equation (8) is: 
 

∑ 

2𝑀

𝑖=1

 𝑎𝑖ℎ𝑖(𝑥)  = 𝑓(𝑥) + ∫  
𝑥

𝑎

 ∑  

𝑛

𝑖=1

 ∑  

𝑖

𝑗=1

 𝑏𝑖𝑗𝑥
𝑖−𝑗𝑡𝑗−1𝑑𝑡

 = 𝑓(𝑥) + ∑  

𝑛

𝑖=1

 ∑  

𝑖

𝑗=1

 𝑏𝑖𝑗

𝑥𝑖

𝑗
− ∑  

𝑛

𝑖=1

 ∑  

𝑖

𝑗=1

 𝑏𝑖𝑗𝑥
𝑖−𝑗

𝑎𝑗

𝑗

 = 𝑓(𝑥) + ∑  

𝑛

𝑖=1

  (𝑐𝑖𝑥
𝑖 − 𝑑𝑖𝑥

𝑖−1)

 = 𝑓(𝑥) + ∑  

𝑛

𝑖=0

 𝐶𝑖𝑥
𝑖                                                                             (9)

 

Where 

𝑐𝑖  = ∑  

𝑛

𝑗=1

 
𝑏𝑖𝑗

𝑗

𝑑1  = ∑  

𝑛

𝑗=1

 𝑏𝑗𝑗

(𝑎𝑗)

𝑗

𝑑𝑖  = ∑  

𝑛−𝑖+1

𝑗=1

 𝑏(𝑛−𝑗+1)(𝑛−𝑗−𝑖+2)

𝑎𝑗

𝑗
 2 ≤ 𝑖 ≤ 𝑛 − 1,

𝑑𝑛  = 𝑏𝑛1 × 𝑎

 

and 

𝐶0  = 𝑑1,
𝐶𝑖  = 𝑐𝑖 − 𝑑𝑖+1 𝑖 = 1,2, … , 𝑛 − 1,
𝐶𝑛  = 𝑐𝑛.

 

 

We Select 2𝑀 collocation points on the interval 𝐼 = [𝑎, 𝑏], we obtain a system of 2𝑀 equations 

with 2𝑀 + 𝑛 + 1 coefficients. It is suitable to write the system of equations in form of matrix- vector 

product as: 
 

𝐴𝐶 = 𝑓                                                                                        (10) 
 

Where 𝐀 = [𝐻 −𝐿]2𝑀×2𝑀+𝑛+1, 𝐂 = [𝑎1, 𝑎2, … , 𝑎2𝑀, 𝐶0, 𝐶1, … , 𝐶𝑛]𝑡, and 𝐟 =

[𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥2𝑀)]. To obtain the values of coefficients we can write equation (10) as: 
 

DC = F                                                                                        (11) 
 

Where 𝐃 = 𝐀𝐭𝐀 and 𝐅 = 𝐀𝐭𝐟. Since linear system equations (11) has a normal matrix 𝐃 of 2𝑀 +

𝑛 + 1 equations and we can use conjugate gradiant method’s algorithm (CGM) to find C. 
 

http://dx.doi.org/10.25098/6.2.30
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Remark 1. There are some paper [9,14,20] have used the concept of Haar wavelete for the nonlinear 

part and then have used the Newton method's for two variables to find all coefficients given. And 

they did it without solving the system of equations which computing them needs so much time for 

large values of 𝑀. But for finiding each cofficient they need Newton method formula to calculate the 

coefficients. Some of them as in [20] did not involved numerical integration but [9,14] have 

approximated the integral with the Haar wavelet basis and performed exact integration of Haar 

functions. 
 

4.Numerical Examples 
 

    In this section we apply our method to nonlinear Fredholm and nonlinear Volterra integral 

equations. Matlab (R2019a) was used (in a computer which has a RAM of 2 GB and CPU of 2GHz ) 

to calculate each of these examples. 
 

Example 1. We have the following equation [14, 21]: 
 

𝑢(𝑥) = −𝑥2 +
𝑥

3
(2√2 − 1) + 2 + ∫  

1

0
𝑥𝑡√𝑢(𝑡)𝑑𝑡.                             (12) 

 

The exact solution is 𝑢(𝑥) = 2 − 𝑥2. 
 

The computer simulation gave the following table 
 

Table 1: Maximum absolute error for nonlinear Fredholm integral equation (12) 

 𝒏 = 𝟐 𝒏 = 𝟑 𝒏 = 𝟒 𝒏 = 𝟓 

𝑴 = 𝟐𝟏 0.343885790515963 0.349821914603896 0.350564219639614 0.349765931194146 

𝑴 = 𝟐𝟐 0.156791030216482 0.249828480856119 0.251227527246668 0.252200402730466 

𝑴 = 𝟐𝟑 0.083262680959299 0.124938964843750 0.125019765253166 0.125253029100295 

𝑴 = 𝟐𝟒 0.047376876668156 0.062492370605469 0.062492370605469 0.062497161939197 

𝑴 = 𝟐𝟓 0.025951710465165 0.031249046325684 0.031249046325684 0.031249046325684 

𝑴 = 𝟐𝟔 0.013723266175552 0.015624880790710 0.015624880790710 0.015624880790710 

𝑴 = 𝟐𝟕 0.007080376623809 0.007812485098839 0.007812485098839 0.007812485098839 

𝑴 = 𝟐𝟖 0.003599695214012 0.003906248137355 0.003906248137355 0.003906248137355 

𝑴 = 𝟐𝟗 0.001815389762843 0.001953124767169 0.001953124767169 0.001953124767169 

𝑴
= 𝟐𝟏𝟎 

0.000911664432146 0.000976562470896 0.000976562470896 0.000976562470896 

𝑴
= 𝟐𝟏𝟏 

0.000456828960097 0.000488281246362 0.000488281246362 0.000488281246362 

𝑴
= 𝟐𝟏𝟐 

0.000277671294557 0.000244140624545 0.000244140624545 0.000244140624545 

 

    Form table (1), it is evident that the solution's maximum absolute error (norm of 'inf' have been 

used) decreases significantly when the collocation points number increases. The maximum absolute 

error of exhibits oscillating behavior when the values of 𝑛 are increased. 
 

Example 2. Let’s solve following equation [9, 21]: 
 

𝑢(𝑥) = sin (𝜋𝑥) +
1

5
∫  

1

0
cos (𝜋𝑥)sin (𝜋𝑡)(𝑢(𝑡))3𝑑𝑡                                 (13) 
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The exact solution is 𝑢(𝑥) = sin (𝜋𝑥) +
20−√391

3
cos (𝜋𝑥). 

 

The computer simulation gives the following table: 
 

Table 2: Maximum absolute error for nonlinear Fredholm integral equation (13) 

 𝒏 = 𝟐 𝒏 = 𝟑 𝒏 = 𝟒 𝒏 = 𝟓 

𝑴 = 𝟐𝟏 0.027135262687034 0.027105152065990 0.027067302526345 0.027043556249940 

𝑴 = 𝟐𝟐 0.014957331218283 0.033633463530456 0.033633463530456 0.033633463530456 

𝑴 = 𝟐𝟑 0.011382230925490 0.010897184532724 0.010893028169126 0.010890308195593 

𝑴 = 𝟐𝟒 0.011534360997371 0.004946910438464 0.005987365417992 0.006586350715125 

𝑴 = 𝟐𝟓 0.009181688396928 0.004136424687560 0.004793507426296 0.005107002498647 

𝑴 = 𝟐𝟔 0.006213380871455 0.003138895590868 0.003411531167843 0.003465215204366 

𝑴 = 𝟐𝟕 0.003754604372783 0.002056171998369 0.002082605670479 0.001990629586698 

𝑴 = 𝟐𝟖 0.002105758555405 0.001183835837244 0.001102518902069 0.000966165949870 

𝑴 = 𝟐𝟗 0.001126145057476 0.000613806804031 0.000507730368230 0.000501444391521 

𝑴
= 𝟐𝟏𝟎 

0.000584717623165 0.000288759531196 0.000270543142096 0.000297722613972 

𝑴
= 𝟐𝟏𝟏 

0.000298347016838 0.000136446404560 0.000159600603741 0.000175159095136 

 

The maximum absolute error of the solution of equation (13) in the table (2) decreases significantly 

when the collocation points number increases. When the value of 𝑛 is raised, the solution's error 

displays fluctuating behavior. 
 

Example 3. For a nonlinear Volterra integral equation [9, 21]: 
 

𝑢(𝑥) =
3

2
−

1

2
exp (−2𝑥) − ∫  

𝑥

0
(𝑢(𝑡)2 + 𝑢(𝑡))𝑑𝑡                                (14) 

 

The exact solution is 𝑢(𝑥) = exp (−𝑥). 
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The computer simulation of the present method gives the following table: 
 

Table 3: The error obtained for nonlinear Volterra integral equation (14) in the present 

method 

 𝒏 = 𝟐 𝒏 = 𝟑 𝒏 = 𝟒 𝒏 = 𝟓 

𝑴
= 𝟐𝟏 

0.108509877465090 0.103709123542693 0.101362910779164 0.100105593017332 

𝑴
= 𝟐𝟐 

0.117426632851684 0.117426632851684 0.117426632851684 0.117426632851684 

𝑴
= 𝟐𝟑 

0.060577077154772 0.060577077154772 0.060577077154772 0.060577077154772 

𝑴
= 𝟐𝟒 

0.030765513656419 0.030765513656419 0.030765513656419 0.030765513656419 

𝑴
= 𝟐𝟓 

0.015503405285316 0.015503405285316 0.015503405285316 0.015503405285316 

𝑴
= 𝟐𝟔 

0.007782041948985 0.007782041948985 0.007782041948985 0.007782041948985 

𝑴
= 𝟐𝟕 

0.003898628051201 0.003898628051201 0.003898628051201 0.003898628051201 

𝑴
= 𝟐𝟖 

0.001951218582387 0.001951218582387 0.001951218582387 0.001951218582387 

𝑴
= 𝟐𝟗 

0.000976085779238 0.000976085779238 0.000976085779238 0.000976085779238 

𝑴
= 𝟐𝟏𝟎 

0.000488162055261 0.000488162055261 0.000488162055261 0.000488162055261 

𝑴
= 𝟐𝟏𝟏 

0.000244110824497 0.000244110824497 0.000244110824497 0.000244110824497 

 

We can observe that as collocation points number rises, the solution’s greatest absolute error of 

equation (14) in the table (3) goes way down. When the value of 𝑛 is increased, the error of the 

solution reflects the constant behavior. 
 

Example 4. Consider the nonlinear Volterra integral equation [9]: 
 

𝑢(𝑥) = 𝑓(𝑥) + ∫  
𝑥

0
𝑥𝑡2(𝑢(𝑡))2𝑑𝑡                                              (15) 

Where 
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𝑓(𝑥) = (1 +
11

9
+

2

3
−

1

3
𝑥3 +

2

9
𝑥4) ln (𝑥 + 1) +

1

3
(𝑥 + 𝑥4)(ln (𝑥 + 1))2 −

11

9
𝑥2 +

5

18
𝑥3

−
2

27
𝑥4. 

 

The exact solution is 𝑢(𝑥) = ln (1 + 𝑥). 
 

The computer simulation error of equation (15) gives the following table: 
 

Table 4: The error obtained for equation (15). 

 𝒏 = 𝟐 𝒏 = 𝟑 𝒏 = 𝟒 𝒏 = 𝟓 

𝑴 = 𝟐𝟏 0.109032170555515 0.115683087135479 0.119827503992651 0.122524774308628 

𝑴 = 𝟐𝟐 0.066901594948058 0.073074597390479 0.076648978686386 0.078860174648933 

𝑴 = 𝟐𝟑 0.041423359274478 0.044277602752303 0.045761560806697 0.046515477758269 

𝑴 = 𝟐𝟒 0.023319023180795 0.024312773007412 0.024624559002807 0.024606129036641 

𝑴 = 𝟐𝟓 0.012314390600286 0.012492783217156 0.012377261688532 0.012163921692160 

𝑴 = 𝟐𝟔 0.006244539841593 0.006161986982323 0.005999194390697 0.005837142853358 

𝑴 = 𝟐𝟕 0.003085824086050 0.002981586084752 0.002880790935835 0.002799006888463 

𝑴 = 𝟐𝟖 0.001504248668365 0.001440926360686 0.001393846496799 0.001360162908626 

𝑴 = 𝟐𝟗 0.000731815165837 0.000702262902534 0.000682952501778 0.000670971938540 

𝑴

= 𝟐𝟏𝟎 

0.000358077171932 0.000345611337144 0.000338271586585 0.000334725478427 

𝑴

= 𝟐𝟏𝟏 

0.000176535827489 0.000171343428942 0.000168775883700 0.000167979544551 

 

We can observe that as collocation points number rises, so does the solution’s maximum absolute 

error of in the table (4). When the value of 𝑛 is increased for 𝑀 = 2𝑖 , 𝑖 = 1,2,3,4,5, the solution's 

error increases, but when 𝑖 = 6,7, … ,11, the solution's error decreases. 
 

5. Conclusion 
 

    Our method’s major benefits are its simplicity. The approach is extremely useful to solve nonlinear 

integral equations. In all examples in section (4), by increasing collocation points number the 

solution’s error decreases, the suggested technique has an advantage over the majority of the 

references cited in this study in that it does not require numerical integration and does not include any 

additional algorithms to solve the nonlinear form in the equation (1). according to the runtime error 

our method is better than the runtime in [9,14,20,21] when the value 𝑀 = 2𝑖 , 𝑖 = 7,8, … ,11, these 

approaches will be quite slow to achieve the approximation solution. 
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