The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

A Proposed Formal Verification Model for Card-controlled Doors Using
PROMELA with SPIN Model Checker

Bryar Ahmad Hassan?, Shko Muhammed Qader?, Hawkar Saeed Ezat®, Hawkar Omar Ahmed 4,
Hozan Khalid Hamarashid®

13 Department of Information Technology, Kurdistan Institution for Strategic Studies and
Scientific Research, Sulaimani, Iraq
24 Department of Information Technology, University College of Goizha, Sulaimani, Iraq
25 Information Technology Department, Computer Science Institute, Sulaimani Polytechnic
University, Sulaymaniya, Iraq
4 Department of Information Technology, College of Commerce, University of Sulaimani,
Sulaimaniya, Iraqg

Email: bryar.hassan@kissr.edu.krd?, shko.qader@spu.edu.iq 2, hawkarsaeed@kissr.edu.krd?
\ hawkar.omar@univsul.edu.ig* hozan.khalid@spu.edu.ig® /

Abstract:

One of the problems with the security building system is the use of card-controlled doors. When
users are classified, card-controlled models provide them different access rights depending on their
classification, allowing them to use just certain doors and not always in both directions. A formal
verification of this system is needed in order to determine its validity. This is the process of
demonstrating or disproving the correctness of a model in terms of a particular formal specification
or feature. On the basis of this assumption, this study used the Protocol or Process Meta Language
(PROMELA) in combination with SPIN to verify the features of the card-controlled model.
Following an introduction to the model's requirements, this article provides a basic explanation of the
model's assumptions as well as the definition of global variables. Following that, the variables are set
to their original values. It is then explained in detail, along with a SPIN simulation, how case study 1
of the model is carried out, which includes the building of an underground structure fitted with a card-
operated access system. Finally, job 2 is defined as a description and validation of the model's
accuracy features, with the latter being the primary focus. Since the suggested model fulfils the
requirements and can be applied to a wide range of building topologies, it has been deemed to be an
optimal, generic, and parametric model for the management of building access.

Keywords: Card-controlled doors, Formal verification, System verification, PROMELA, SPIN
model checker.

roadlall
Ol (il Cagal 2y Lodie 4S8 48Ul Lga aSal) ay) ol oY) aladii) (& laall () allas JSLEG (5aa)
o Ll Gl 5 dah Lime ol il alasiiuly agd ey Las pgisicat e lolaie) ddlide Jgon g (3 yha agd i 55 aSatl) d8ay 3l
Craddin) (b Y118 pelal o) 4iadlia pass dal e sl 138 e an)l ol) dals @l dum cpalasy) OIS

Ladia 2ay , A8Uadlly ASal) 3 gad) e 00 GRI(SPIN) ae &l jisVL (Meta) 4 ddae s J S 55550 Al jall o3a
2 oy @lld dey | Agalladl) jusiall Cay pas) ALY 3 gail) colial Y Ll s 58 A 038 2285 23 gail) cilillaial

DOI: http://dx.doi.org/10.25098/6.1.30
®®@® Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

82

http://dx.doi.org/10.25098/6.1.30
mailto:bryar.hassan@kissr.edu.krd
mailto:shko.qader@spu.edu.iq
mailto:hawkar.omar@univsul.edu.iq
mailto:hozan.khalid@spu.edu.iq

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Gl J5Y),) oUail) agle o jad g () 5 (pnd e LAAT (SPIN) A pladinly, 4aba) Liad Cua <l yuiial
Ao yul) Cun (g allail) Gaibiad e dery 2l 3y 2l 5 ol VL aSall i (o gas allail) 138 DA (e s aall i)Y
AUaill) slasiagy (pll @8l gl 5 el Adladiind oSay 2l 138 o J 5k o aoaians Al 8, HUaill 38800 Aais) s
e AL 5 Aabiad) Ao yuall el) 285 e AN A) AUl Y 438 pe g daand A (e ol 53 pSaill KA

el a8 sall lillaie ae Alall)

SPIN CJ}M&B.JA‘).\AJ)J‘(‘;M\UAM\cw)ﬂé&;ﬂ\caﬁwﬁ@aﬂ;ﬂ\éﬁu\y\ -40)al) culalsty

1458

c

SIS S IS ann i S (So) (et 4S (o4l gl g Al A€ o 58S K Al Sasay
38 4 4S el Gl IS s (Ko R ity S 5 QSR sy A QS8 pen s 5 4S5
s R A e g) gla (S S diaa 5o s K A (S Ol _AA IS4y (0l e o AdlilSe_aiia J\Say (S5a S5 % S
So) (ot (S 4] 4K SISy iS5 yiSala A4S) dediian 4] Cua (533 (50)skes (VAen
Y Al (At Sy St sl il A b4 s Salai R 5 U 5 Ao add 4S A s 5 MG
S SIISAT oo sty 5365l g e ol shan (S M A 4y (4SO Sadaia AS b et (5 Aw 5y
S5 L e i IS4 4 S 4 (oan) JAEAD o sASars (US55 i S s wila) 5 (J3S550)
SAEA (5 5) A5 (g0 A0 S 55 5 S (Lo S (S gy i jSaliy (g g2 4l Lao g a0 il iS4y GISIE oo
Go XN A AL ool Sass) 5ol AT A ASAeiian (S SRAS My R Ol oAkl ol Gl Sa
i 48 0955 K gy lediggad 550 o(Olpm) (sl SMISAT lia ISy Ja8 4l claw sty 358 pal TailedSo gaia S 5
SSE o (55558 b sAdivugms o (5 384y 4S ASapilaally (ool 53 (B il A o i Sas Bl (o) S Ly
SVl (S Sdadaia 5 iR) A OIS ASAdinn AlSapaiaianll s Al IS ae 550 (5o s S8l b5 g S0
4 S) (a4 ailiipd gai 5 LSatlaally Al iy IS4y < i 345 Adbunn il Tl 3S4) ASAai (Se)
U5 Sl (i (50 980 Al co sy S 5 080 ia sl sy) QLIS ey (ST 50 5 (iaas S
s ISy o Sty o a8 Caind K 5 35l 530 5 4 S)l slem kel 5 il b 30 Sindia

OMSalia ga (g0 s4ia S ey ot (3 So iy ¢pdbuns s3ilals (S8 joa 3 335538 (SIS 1olsdd g alls
2 A (5 a

1. INTRODUCTION

This article includes a PROMELA model of a security building system, which is called card-
controlled doors, and uses SPIN to verify some of its properties. The card-controlled model has
different access rights are assigned to users in different categories, allowing them to use only some
of the doors and not always in both directions[1]. This paper starts with presenting the requirements
of the model with a general description to explain model’s assumptions and define global variables.
Next, an initialisation of the variables is shown. Then, a description of case study 1 of the model with
its SPIN simulation is presented, which is about constructing a building fitted with a card operated
access system. Finally, case study 2 as a description and verification of the model’s correctness
properties is indicated.

DOI: http://dx.doi.org/10.25098/6.1.30
@ISO

83

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

2. Problem Statement

Card-controlled doors model includes two case studies. The first case study is to construct a
PROMELA model [2] to represent a building fitted with a card operated access system and simulate
it using SPIN simulation. The second case study is to construct an appropriate description of four
properties, and then use SPIN’s verification facilities to establish whether the model satisfies each
of them.

3. Model Description

This section is about a general and introductory description of the model that includes the model
assumptions and defining the global variables.
1. This model can be applied on every topology after changing the global variables. For the sake of
ease, this model and its report focus on the below building topology.

:/] 2

Figure 1: building topology sample

2. For the current building topology, User locations can be classified into three types that they are
defined as global variables in this model as follows:

Table 1: Zones of model

Location Identifier
Outside 0
ZoneA 1
ZoneB 2

In this model, these locations are defined by global variables named Outside, ZoneA, and ZoneB.

3. There are four doors for the current building topology. For this model, they are classified and
identified follows:
Table 2: doors classification

Door number Identifier
Door 1 0
Door 2 1
Door 3 2
Door 4 3

DOI: http://dx.doi.org/10.25098/6.1.30
®®@® Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

84

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

The number of doors is identified by a defined global constant named NofDoors that holds values
from 0 to 3. Likewise, CoomonDoor is initialised to 2 as a common door between ZoneA and ZoneB.

4. Based on the model requirements, there are four groups of users and these groups are classified
and identified for this model as follows:

Table 3: classification of users

User type Identifier
UsersAB 0
UsersA 1
UsersB 2
Others 3

5. Doors, their locations (rooms), and their direction (inside and outside) are connected via a typedef
user-defined data structure called named DoorTopology as shown below. Because there are four
doors, an array of size four is declared based on this DoorTopology called doorTop.

12 typedef DoorTopology {
14 short doorLoc;

15 byte doorlInside;

16 byte doorOutside

17 }

6. The four types of users and their authentication level to access the doors for both entering and
exiting directions are defined by using typedef user-defined data type as global, which is named
AccessTopology. By using this user-defined datatype, access as an array of size four is declared.

6 typedef AccessTopology {
8 byte userLocation;

9 bit doorlin [4];

10 bit doorQOut [4]

1}

7. To communicate between the users and doors, a synchronous channel is defined to communicate
between the users and doors, which is called swipe [3]. This channel has three values for user, door,
and user location.

12 chan swipe = [0] of {byte , byte, byte};
8. In this model, it is assumed that each user can enter or exit through a door in a different time.

9. It is assumed that when a user presents their card to a reader by a door, if the door opens, the user
passes through and the door is locked behind them; people do not swipe their cards and walk away,
not do they open for others, and “tailgating” does not happen.

DOI: http://dx.doi.org/10.25098/6.1.30
@ISO

85

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

4. The proposed Model Installation

All of the global variables are initialised in the initialisation process as the initial system state [4].
To run the processes for all the users, the user () process is run four times for each group of the users
and process door () runs one.

125 atomic { run user(0); run user(1); run user(2); run user(3); run door(); }
5. Case Study 1

In this case study, a PROMELA model is presented to construct a building fitted with a card
operated access system. In order for the model to be more generic and parametric in the building
topology and the user right access[5], all information, such as the connection between rooms and
doors and the rights to access specific doors[6] spending on the user type is defined as global
variables[7].

5.1 Model Description

The case study 1 of this model is done by defining two processes, which are user (byte u) and door
(). Both processes can communicate on each other via a synchronous channel[8]. The former process
presents the way of swiping the users’ card into the doors via the swipe channel. The parameter byte
u in user (byte u) process represents user. Doors are generated by random from 0 to 3. Users can
swipe their card into the doors that are in their own zone. For instance, usersAB can swipe their card
into door 1, 2, or 4 if their location is Outside. Similarly, users in ZoneA and ZoneB can swipe their
cards into the surrounded doors and the common door between ZoneA and ZoneB can be swiped by
users in either location. Thus, they can swipe their cards to the authorised doors[9], [10], and then
enter from a location into another. The latter process describes the receiving requests from the users
to access their permitted doors. After receiving a request from the users to enter or exit from the doors,
the door () process checks for authentication for both directions of the doors whether the user can
access the door or not. access[u].doorIn[d] is used to check the inside direction of the doors’
authentication and access[u].doorOut[d] is used to check the outside direction of the doors’
authentication. In coincident with doors’ authentication, the process checks each user’s current
location to be able to change and represent user’s location after entering or exiting a door.

5.2 Simulation Output
In this section, a SPIN simulation[11] of this model presents to gain early feedback on it.

1. Before simulating the model, the display mode parameters can be set up. Message Sequence
Chart (MSC) Panel, Time Sequence Panel, Data Values Panel are presented by default on main
windows SPIN simulator. Figure 2 depicts this display mode.

DOI: http://dx.doi.org/10.25098/6.1.30
®®®@ Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

86

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

[eted
pn -5 X-v-0123 g 41000 modes pni

Figure 2: SPIN’s display mode parameter

Style parameters can be set up to Random (default)[12], Guided, and Interactive. Moreover, on
setting the parameters, the number of initial steps to skip as well as the maximum number of steps
can be specified in SPIN[13]. As it is shown in Figure 3.

Mode] AFull Channel | Output Filtering (reg. exps.) |

& Random, with seed: 13 & blocks new messages process ids:

" Interactive (for resolution of all nondeterminism) " loses new MESSAgEs guene ids:

" Guided, with trail: /model5.pmltrail browsel [™ MSC+stmnt
var names:

initial steps skipped: 0 SC max text width |20

maximum number of steps: 1004 MSC update delay |25 tracked fanable

[V Track Data Values (this can be slow) track scaling:

Figure 3: setting Initial Steps Skipped and Maximum Number of Steps

The Initial Steps Skipped is set to zero and the Maximum Number of Steps is set to 1000 in this
simulation. Table 4 illustrated the most important parameters in the SPIN simulation mode with
their default values.

Table 4: SPIN simulation mode — setting parameters
Parameter Value

Mode Random, with seed (default); interactive; guided,
with trail

A full channel |Blocks new messages (default); loses new
messages

Initial steps Default value is 0

skipped

Maximum Default value is 10000

number of steps

MSC max text |Default value is 20
width

MSC update Default value is 25
delay

Figure 4 presents the SPIN’s setting parameters in simulation mode and also Figure 5 gives a
screenshot of interactive parameter mode.

DOI: http://dx.doi.org/10.25098/6.1.30
@ISO

87

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Mode | AFull Channel | Output Filtering (reg. exps.) |

& Random, with seed: 123 & blocks new messages process ids:

(" Interactive (for resolution of all nondeterminism) " loses new messages queueids:

" Guided, with trail: modelS.pml.trail browse | [T MSC+stmnt

var names:
initial steps skipped: 0 MSC max text width 20 :
maximum number of steps: 1 MSC update delay 25 ededianable
V' Track Data Values (this can be slow) track scaling:

Figure 4: SPIN’s display mode parameter

Backaround commend executed
5pin -p -5 - -X v 1123 1.9 - 410000 model11 pmi

Figure 5: SPIN’s interactive mode for resolution of all non-determinism

2. Data Values Panel presents data values across time that includes buffered channels, and global and
local variables. The values of all variables as shown in Figure 6 are initialised on the Data Values
Panel in the first step of simulation. This Figure is the first screenshot of this panel that shown the
values of buffered channel, global and local variables in the initial step. Similarly, Figure 7 is an
example of capturing variable values of step 579 in the execution steps.

Figure 6: initial step of data value panel

[variable values, step 579]

door (5):
door (5) :t
door(5):

user(1l):
user(2):
user (3):
user(4):

I T e T

W Ww W

Figure 7: values of variable for a step

DOI: http://dx.doi.org/10.25098/6.1.30
®®®@ Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

88

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

3. By looking at the Time Sequence Panel that provides a graphical presentation of the process’s
execution over time, it can be seen that multiple perspectives are supported, such as execution steps
interleaved, one window per process, and one execution trace per process. Figure 8 shows a
screenshot of this panel. By pointing out a process in this panel, the execution line can be seen by
red font.

59 55 --X-¥-123 49410000 mode 1 pmi

Figure 8: Time Sequence Panel

4. By looking at Message Sequence Chart (MSC), each of the four users swipes its card to their
accessed doors randomly through the channel. Users send requests and the doors receive them. If a
group of users is authenticated to pass through a door, the door will open directly in order to the
user pass through it. In addition, each group of users has its own communication line to the doors.
For example, Figure 9 depicts the movement of usersAB. The red lines show the movement of
usersAB through the rooms, and paying particular attention to how the location of this user is
updated and represented in the chart.

user:l
[110.1.0 door:5
| B e 120,10
[1002 |
I T =
116 [1000 |
116 | [T 120.0.0
141 [1002 |
141 I T w5
| |
[
[

7

99

168 110,0,0
| [T 120.0.0

110,1,2 I
T e [

168
187

210 U |

210 [e -{ 120,2,0
225 113.1.0 |

225 user:2
257 11.3.0 |

257 | user:3 121.3,0
201 m21 f— | | |

226 112.1,0 [

346 11.1.2 S .

Figure 9: Message Sequence Chart

Similarly, the movement of the other users can be traced as it is shown on Table 5 based upon
the Message Sequence Chart.

DOI: http://dx.doi.org/10.25098/6.1.30
@ISO

89

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Table 5: MSC simulation tracing

UsersA Doors Location |[Comment

(user:2) (door:5)

111,3,0 171,3,0 Outside |Swiping and entering to ZoneA via door 4

111,3,1 171,31 ZoneA |Swiping via door 4, but has not authorised
to exit

111,3,1 171,31 ZoneA |Swiping via door 4, but has not authorised
to exit

111,2,1 171,21 ZoneA |Swiping and exiting from ZoneA via door
3

111,2,2 171,2,2 ZoneB Swiping and exiting ZoneA via door 3

In regard with the communication between the users and doors, Figure 10 presents the way of
swiping the users’ cards to their authorised doors. This communication is done by the swipe channel
between the doors and users. Via clicking each of the communication channels between the users and
doors on MSC, the fragment of code(s) in relation with this communication can be spotted by red line
on the model. In relation with the MSC and the executed code, Figure 11 presents the executed line
of code when each communication between users and doors is spotted.

515
567
567
610
610
636

——
= 121,3.0
——
= 121,31
maa— ||

173,30

AR
iy =
i B
650 1222
673 1222
678 el .
| R
707 wso H—1 | |
735 222 | |
778 222 | |
793 13.1,0
793
304 w2z —o 1 |
822 22 H— |
|
837 i |

Figure 10: tracing movement of usersAB

door:5
120.1.0

Figure 11: channel communication between users and doors (send and receive values)

90

DOI: http://dx.doi.org/10.25098/6.1.30

®®@® Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Figure 12: spotting communication channel with executed code

6. Case Study 2

In case study 2, a description and verification of the model’s correctness properties are identified.
6.1 Verification Description
In this section, an appropriate description of each of the following properties is constructed.

1. To verify the model whether it does or does not deadlock[14], end-state can be used to judge
whether a process is in a deadlock state or an accepTable waiting state in a non-terminating model.
End labels as one of the types of meta-labels can be used to verify for absence of reachable
deadlock states in this model. End labels have names that begin with end. The only valid end states
are where every PROMELA process has reached the end of its code, whereas any invalid end state
is a deadlock state. By using a valid end-state, every instantiated process has either terminated or
is blocked at a statement that is labelled as an end-state. The below fragment code is about using
the end-state in the model.

access[u].userLocation == Qutside && d !=CommonDoor ->

46 if

47 . access[u].userLocation ==doorTop[d].doorOutside ->
48 endl: swipe ! u, d, access[u].userLocation;

49 fi

2. To verify a user classed as “Others” is never able to open any door, never claim can be deployed
because it is typically used to specify a behaviour that never happens. To do so, a never-claim is
defined in this model to check the location of “Others” user as it should never be changed as
indication that unable to open any door and enter. The below fragment code is the never claim
process to verify this property.

56 never{

57 do

58 .. (access[3].userLocation != 0) -> break
59 ::else->skip

60 od

61 }

DOI: http://dx.doi.org/10.25098/6.1.30

91

©lolSle)

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Never claim checks for invariance of this property (access[3].userLocation = 0). This property is a
boolean expression. While the boolean expression remains true, the claim process remains in its initial
state. As soon as the property is found to be false, the never-claim process ends and indicates an error.
Furthermore, the else->skip statement can be replaced with else, but this replacement might miss
some violations of the invariant.

3. To verify UsersA are able to enter zoneA through door 3 and able to leave the same way via door
4, LTL formula for verification can be used to specify that this property must hold at certain points
in execution. To do so, a formula is defined in this model, which is labelled as pl. This claim
evaluates the condition as a side-effect free, if it will be false, an error is reported. This claim can
be run by setting its name. If the claim is false, execution will be stopped with an error message.

221tl p1 { (access[1].userLocation == ZoneB -> access[1].userLocation == ZoneA) }

4. To verify if there is any circumstance where one of the several authorised users may be unable to
pass through a door, LTL formulas can be used. Users can pass those doors who are allowed to do
so, whereas they cannot pass through any unauthorised doors. For example, users labelled as
“Others” cannot access any door and users labelled as “UsersA” can pass through all of the doors.
However, there might be a circumstance that a user may not be enabled infinity often to pass
through a door and it may be scheduled to be enabled eventually. This situation is called weak
fairness. SPIN only supports weak fairness assumptions, but strong fairness can be enforced by
using LTL formulas. For example, usersA can be enforced to enter from ZoneB to RoomA by
using the below LTL formula:

23 ltlp2 { (‘access[2].userLocation == ZoneB -> access[2].userLocation == Qutside) }

6.2 Verification Output

In this section, the usage of SPIN’s verification facilitates to establish whether the model satisfies
each of following correctness properties. To start with verifying the four correctness properties in
SPIN, the following SPIN verification parameters in Table 6 should be set up based on the needs of
case study 2 to represent. Figure 14 and Figure 13 depict the SPIN’s basic verification parameters
and advanced verification parameters.

Sfety Storage Mode Search Mode

Save Result in:

Figure 13: SPIN verification parameters

DOI: http://dx.doi.org/10.25098/6.1.30
®®@® Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

92

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Remove
Remove

Advanced Etol ldpping Advanced: Parameters
€ don't stop at errors = = = =
Physical Memory Available (in Mbytes): 1024 explain
& stopat 211
Op 2L EndLOR Estimated State Space Size (states x10A3): 1000 explain
I save all error-trails
Maximum Search Depth (steps): 10000 explain
I~ add complexity profiling
Nr of hash-functions in Bitstate mode: 3 explain
I” compute variable ranges
Size for Minimized Automaton 100 explain
A Full Channel
R Extra Verifier Generation Options: explain
C lose 5 Extra Compile-Time Directives: -02 explain
State - Gear. [o= Ror-Time Options: explain

Figure 14: advanced SPIN verification parameters

Table 6: SPIN verification parameters

Parameter Value

Safety Deadlocks; assertion; violations

Liveness Non-progress cycles; acceptance cycles; enforce weak fairness

Never claims Do not use never claim or Itl propery; use claim or claim name (opt)

Storage mode Exhaustive; hash-compact; bitstate search

Search mode Depth-first - partial order reduction; iterative search (shortest trail); breadth first;
report unreachable code

1. The model does not deadlock due to the use of meta-label in the model. Figure 13 and Figure 15
present setting the deadlock verification parameter and a deadlock result of the model. Based on
the verification result on the latter Figure, the model does not deadlock.

Sfety [Storage Mode [Search Mode
@ safety & exhaustive @ depth-first search
[™ + minimized automata (slow) [V + partial order reduction
[™ + assertion violations I™ + collapse compression I™ + bounded context switching
[™ + /s assertions € hash-compact € bitstate/supertrace with bound: 0
Liveness Never Claims [+ iterative search for short trail
€ non-progress cycles @ donot use a never claim or it property breadth-first search
€ acceptance cycles € use claim [V + partial order reduction
I™ enforce weak faimess constraint claim name (opt): I™ report unreachable code

Figure 15: deadlock verification parameter

Full statespace search for:
never claim - (not selected)
assertion violations - (disabled by -A flag)
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 116 byte, depth reached 9999, errors: 0
715500 states, stored
4332333 states, matched
5047833 transitions (= stored+matched)
0 atomic steps
hash conflicts: 31326 (resolved)

Stats on memory usage (in Megabytes)
87.341 equivalent memory usage for states (stored*(State-vector + overhead))
65.854 actual memory usage for states (compression: 75.40%)
state-vector as stored = 85 byte + 12 byte overhead
64.000 memory used for hash table (-w24)
0.343 memory used for DFS stack (-m10000)
130.066 total actual memory usage

Figure 16: deadlock verification result

2. The verification result of the never claim has shown that if a user classed as “Others”, it never be
able to enter any door. Figure 17 and Figure 18 depict the details of setting never claim
parameter and its verification result.

DOI: http://dx.doi.org/10.25098/6.1.30

93

©lolSle)

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Sfety [Storage Mode [Search Mode
€ safety & exhaustive & depth-first search
[™ + invalid endstates (deadlock) [™ + minimized automata (slow) [V + partial order reduction
I + assertion violations [+ collapse compression I + bounded context switching
I™ + xi/xs assertions (" hash-compact (" bitstate/supertrace with bound: 0
Liveness Never Claims I™ + iterative search for short trail
 non-progress cycles (" do not use a never claim o it property breadth-first search
& acceptance cycles & use claim V' + partial order reduction
I enforce weak faimess constraint claim name (opt): I” report unreachable code

Run 0 esult pan.out

Figure 17: never claim parameter

Full statespace search for:
never claim + (never_0)
assertion violations - (disabled by -A flag)
acceptance cycles + (faimess disabled)
invalid end states - (disabled by -E flag)

State-vector 128 byte, depth reached 9999, errors: 0
states, stored
3320486 states, matched
4012632 transitions (= stored+matched)
0 atomic steps
hash conflicts: 7 (resolved)

Stats on memory usage (in Megabytes):
95.052 equivalent memory usage for states (stored*(State-vector + overhead))
71.586 actual memory usage for states (compression: 75.31%)
state-vector as stored = 92 byte + 16 byte overhead
64.000 memory used for hash table (-w24)
0.343 memory used for DFS stack (-m10000)
135.828 total actual memory usage

Figure 18: never claim verification result

3. To verify the third property, the claim has given the result that UsersA are able to enter ZoneA
through door 3 and able to leave the same way or via door 4. Both Figure 19 and Figure 20
present the p1 claim parameter setting and its verification result.

Safety | Storage Mode | Search Mode
" safety & exhaustive & depth-first search
[™ + invalid endstates (deadlock) I™ + minimized automata (slow) [V + partial order reduction
[+ assertion violations [™ + collapse compression I + bounded context switching
[+ xt/xs assertions " hash-compact " bitstate/supertrace with bound: 0
Liveness Never Claims I™ + iterative search for short trai
€ non-progress cycles € do not use a never claim or it property € breadth-first search
& acceptance cycles & use claim V' + partial order reduction
I enforce weak faimess constraint claim name (opt): jpl I” report unreachable code
Run Stop pan.out

Figure 19: assertion verification parameter

Full statespace search for:
never claim +(p1)
assertion violations - (disabled by -A flag)
acceptance cycles + (faimess disabled)
invalid end states - (disabled by -E flag)

State-vector 84 byte, depth reached 0, errors: 0
1 states, stored
0 states, matched
1 transitions (= stored+matched)
0 atomic steps
hash conflicts 0 (resolved)

Stats on memory usage (in Megabytes)
0.000 equivalent memory usage for states (stored*(State-vector + overhead))
0.286 actual memory usage for states
64.000 memory used for hash table (-w24)
0.343 memory used for DFS stack (-m10000)
64.539 total actual memory usage

Figure 20: assertion verification result

4. It has verified an instance of weak verification that can be enforced by using LTL. Figure 21 and
Figure 22 give the screenshots of setting the LTL parameter and their verification result.

DOI: http://dx.doi.org/10.25098/6.1.30
®®®® Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

94

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

Safety 1 Storage Mode I Search Mode I

C safety & exhaustive & depth-first search

I™ + invalid endstates (deadlock) [~ + minimized automata (slow) [V + partial order reduction

[+ assertion violations I + collapse compression I” + bounded contert switching

I™ + xefxs assertions € hash-compact " bitstate/supertrace with bound: 0

Liveness] Never Claims I™ + terative search for short tril
€ non-progress cycles o not use a never claim or 1t property € breadth-first search
 acceptance cycles & use claim [V’ + partial order reduction
I™ enforce weak faimess constraint claim name (opt): p2 I™ report unreachable code
Run Stop | Save : pan.out

Figure 21: LTL verification parameter

Full statespace search for:
never claim +(p2)
assertion violations - (disabled by -A flag)
acceptance cycles + (faimess disabled)
invalid end states - (disabled by -E flag)

State-vector 84 byte, depth reached 0, errors: 0
1 states, stored
0 states, matched
1 transitions (= stored+matched)
0 atomic steps
hash conflicts: [(ESE))

Stats on memory usage (in Megabytes):
0.000 equivalent memory usage for states (stored*(State-vector + overhead))
0.283 actual memory usage for states
64.000 memory used for hash table (-w24)
0.343 memory used for DFS stack (-m10000)
64.539 total actual memory usage

Figure 22: LTL verification result

7. Conclusion

In this article, a model of the card-controlled doors has presented by using PROMELA to build the
model and SPIN to verify some of its properties. Firstly, the requirements of the model with an outline
description have presented. Secondly, an initialisation of the variables has been shown. Thirdly, a
description of case study 1 of the model with its SPIN simulation has presented. Finally, case study
2 as a description and verification of the model’s correctness properties has indicated. Therefore, the
suggested model is a relatively optimal, generic, and parametric model for building access control
because it meets the requirements and it could be applied for different building topologies.

8. References

[1] R. Nardone et al., “Modeling railway control systems in Promela,” in International Workshop
on Formal Techniques for Safety-Critical Systems, 2015, pp. 121-136.

[2] S. Loffler and A. Serhrouchni, “Creating implementations from PROMELA models,” 1996.

[3] D.J.C. A.P. Monteiro, “Coverage-based validation of embedded systems,” 2015.

[4] H. E. H. Santoso, H. Saputra, A. Shofyan, K. Anam, and E. Supraptono, “The Use of RFID
Sensors for Automatic Doorstop Application”.

[5] A. Yacoub, M. E.-A. Hamri, and C. Frydman, “Using DEv-PROMELA for modelling and
verification of software,” in Proceedings of the 2016 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, 2016, pp. 245-253.

[6] Y. Choi, “Automated validation of [oT device control programs through domain-specific model
generation,” in International Conference on Software Engineering and Formal Methods, 2018,
pp. 254-268.

DOI: http://dx.doi.org/10.25098/6.1.30
@ISO

95

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

V. S. Burenkov and A. S. Kamkin, “Checking parameterized Promela models of cache

coherence protocols,” Tpyovr Uncmumyma cucmemmnozo npoepammuposanus PAH, vol. 28, no.
4, 2016.

N. Dilley and J. Lange, “Bounded verification of message-passing concurrency in Go using
Promela and Spin,” arXiv preprint arXiv:2004.01323, 2020.

M. I. Abbasi and L. M. Mackenzie, “A Flexible Approach for Modelling and Analysis of
Feature Interactions in Service-Oriented Product Lines.,” J. Softw., vol. 12, no. 10, pp. 823—
830, 2017.

A. S. Alghamdi, “Features Interaction Detection and Resolution in Smart home systems Using
Agent-Based Negotiation Approach,” 2015.

B. Vlaovi¢, A. Vreze, and Z. Brezo¢nik, “Applying automated model extraction for simulation
and verification of real-life SDL specification with Spin,” IEEE Access, vol. 5, pp. 5046-5058,
2017.

Z. Soufiane, E.-N. Abdeslam, and B. Slimane, “An SDL to Discrete-Time PROMELA
Transformation of Home Area Network model,” in Proceedings of the 12th International
Conference on Intelligent Systems: Theories and Applications, 2018, pp. 1-5.

M. Dabaghchian and M. A. Azgomi, “Model checking the observational determinism security
property using PROMELA and SPIN,” Formal Aspects of Computing, vol. 27, no. 5, pp. 789—
804, 2015.

A. de Lucia, V. Deufemia, C. Gravino, and M. Risi, “Detecting the behavior of design patterns
through model checking and dynamic analysis,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 26, no. 4, pp. 1-41, 2018.

The PROMELA Model
The complete source code of the model for both task 1 and task 2 is attached as a separate file and
alternatively is shown below.

1 #define NofDoors 3 /I number of the doors. 0:dool, 1:door2, 2:door3, 3:door4

2 #define CommonDoor 2 /I door number 3 (has index 2) is common between
room A and B.

3 #define Outside 0

4 #define ZoneA 1

5 #define ZoneB 2

6 // To define the four types of users and their authentication level to access the doors for both

entering and exiting directions.
7 typedef AccessTopology

8 {

9
10

byte userLocation; //1:RoomA, 2:RoomB, 0:Outside
bit doorlIn [4];

96

DOI: http://dx.doi.org/10.25098/6.1.30
®®@® Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

11 bit doorOut [4]

12}

13 // To connect doors, their locations (rooms), and their direction (inside and outside) together.

14 typedef DoorTopology

15 {

16 short doorLoc;

17 byte doorinside;

18 byte doorQutside

19 kK

20 AccessTopology access [4];

21 DoorTopology doorTop[4];

22 chan swipe = [0] of {byte , byte, byte}; //to communicate between the users and doors

23

24 Itl p1 { (access[1].userLocation == ZoneB -> access[1].userLocation == ZoneA) }
/Iverification 3

25 Itlp2 { (access[2].userLocation == ZoneB -> access[2].userLocation == Qutside) }
/Iverification 4

26 proctype door(){

27 byte u, d, uLoc;

28 do

29 :swipe? u,d,uLoc-> // If the doors recieve a swiping card request to access.

30 if

31 //Users authorisation check to enter the doors (checking outside directions of the doors).

32 ::access[u].doorOut[d] == 1 && access[u].userLocation == Outside &&

doorTop[d].doorOutside == 0 ->
33 access[u].userLocation = doorTop[d].doorLoc;
34 //Users authorisation check to exit the doors (checking inside directions of the doors).

35 ::access[u].doorIn[d] ==1 && access[u].userLocation >= ZoneA ->
36 if
37 . d ==CommonDoor -> //if a user tries to exit via door 3 (common door)

38 byte temp = access[u].userLocation;
39 access[u].userLocation = doorTop[temp].doorInside;
40 //if a user tries to exit via the other doors.

41 ;- access[u].userLocation == doorTop[d].doorInside && d = CommonDoor ->

42 access[u].userLocation = Outside;

43 fi

44 ;o else -> skip;

45 fi

46 od

47 }

48 proctype user(byte u){

49 byte d = 0;

50 do

DOI: http://dx.doi.org/10.25098/6.1.30 97
(OSE)

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

51 /I counter for door numbers generator

52 o d!=3->d++

53 ud!=0->d--

54 /[users allow to access those doors which are in its locations.

55 1 access[u].userLocation == Outside && d '=CommonDoor ->

56 if

57 ::access[u].userLocation ==doorTop[d].doorOutside -> // if the user tries to access one of
the doors

58 endl: swipe ! u, d, access[u].userLocation;

59 fi

60 :: access[u].userLocation ==ZoneA -> // if userlocation is in ZoneA

61 if

62 :: d==CommonDoor -> // if the user tries to exit from ZoneA and enter to ZoneB via door 3.
63 end2: swipe ! u, d, access[u].userLocation;

64 /I if the user tries to access the other doors

65 :: access[u].userLocation == doorTop[d].doorInside && d '= CommonDoor ->
66 end3: swipe ! u, d, access[u].userLocation;

67 :: else -> skip;

68 fi

69 //if the user tries to exit from ZoneA and enter to ZoneB via door 3.

70 :: access[u].userLocation == ZoneB ->

71 if

72 :: d==CommonDoor -> // if the user tries to exit from ZoneB and enter to ZoneA via door 3.
73 end4: swipe ! u, d, access[u].userLocation;

74 /I'if the user tries to access the other doors

75 ::access[u].userLocation == doorTop[d].doorInside && d '= CommonDoor ->
76 end5: swipe ! u, d, access[u].userLocation;

77 ::else -> skip;

78 fi

79 ::else -> skip;

80 od

81 }

82 never{

83 do

84 . (access[3].userLocation = Outside) -> break

85 ::else->skip

86 od

87 }

88 init{

89 // doorTop array inilialisation.

90 doorTop[0].doorLoc = ZoneB; //Door 1 in RoomB

91 doorTop[0].doorInside = ZoneB;

DOI: http://dx.doi.org/10.25098/6.1.30
®®@® Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

98

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

92 doorTop[0].doorOutside = Outside;

93

94 doorTop[1].doorLoc = ZoneB; //Door2 in RoomB
95 doorTop[1].doorinside = ZoneB;

96 doorTop[1].doorOutside = Outside;

97

98 doorTop[2].doorLoc = ZoneA; //Door3 in RoomA (and common with RoomB)
99 doorTop[2].doorInside = ZoneA,

100 doorTop[2].doorOutside = ZoneB;

101

102 doorTop[3].doorLoc = ZoneA; //Door4 in RoomA
103 doorTop[3].doorInside = ZoneA;

104 doorTop[3].doorOutside = Outside;

105

106 //access array initialisation

107 access[0].doorIn[0] =1; // access[0] is UsersAB:
108 access[0].doorIn[1] = 1;

109 access[0].doorIn[2] = 1;

110 access[0].doorIn[3] = 1;

111 access[0].doorOut[0] = 1;

112 access[0].doorOut[1] = 1;

113 access[0].doorOut[2] = 1;

114 access[0].doorOut[3] = 1;

115 access[0].userLocation = Outside;

116

117 access[1].doorIn[0] =1; //access[1] is UsersA:
118 access[1].doorIn[1] = 1;

119 access[1].doorIn[2] = 1;

120 access[1].doorIn[3] = 0;

121 access[1].doorOut[0] = 1;

122 access[1].doorOut[1] = 1;

123 access[1].doorOut[2] = 1;

124 access[1].doorOut[3] = 1;

125 access[1].userLocation = Outside;

126

127 access[2].doorIn[0] =1; //access[2] is UsersB:
128 access[2].doorIn[1] = 1;

129 access[2].doorIn[2] = 0;

130 access[2].doorIn[3] = 0;

131 access[2].doorOut[0] = 1;

132 access[2].doorOut[1] = 1;

133 access[2].doorOut[2] = 0;

134 access[2].doorOut[3] = 0;

DOI: http://dx.doi.org/10.25098/6.1.30
@ISO

99

Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University — Sulaimaniya
Volume (6), Issue (1), June 2022
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

PP: 82-100

135 access[2].userLocation = Outside;

136

137 access[3].doorIn[0] = 0; //access[3] is Others:
138 access[3].doorIn[1] = 0;

139 access[3].doorIn[2] = 0;

140 access[3].doorIn[3] = 0;

141 access[3].doorOut[0] = 0;

142 access[3].doorOut[1] = 0;

143 access[3].doorOut[2] = 0;

144 access[3].doorOut[3] = 0;

145 access[3].userLocation = Outside;

146

147 [/ running the processes:
148 atomic { run user(0); run user(1); run user(2); run user(3); run door() };

149 }

100

DOI: http://dx.doi.org/10.25098/6.1.30
®®@® Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

http://dx.doi.org/10.25098/6.1.30

