
The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

82
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Abstract:

One of the problems with the security building system is the use of card-controlled doors. When

users are classified, card-controlled models provide them different access rights depending on their

classification, allowing them to use just certain doors and not always in both directions. A formal

verification of this system is needed in order to determine its validity. This is the process of

demonstrating or disproving the correctness of a model in terms of a particular formal specification

or feature. On the basis of this assumption, this study used the Protocol or Process Meta Language

(PROMELA) in combination with SPIN to verify the features of the card-controlled model.

Following an introduction to the model's requirements, this article provides a basic explanation of the

model's assumptions as well as the definition of global variables. Following that, the variables are set

to their original values. It is then explained in detail, along with a SPIN simulation, how case study 1

of the model is carried out, which includes the building of an underground structure fitted with a card-

operated access system. Finally, job 2 is defined as a description and validation of the model's

accuracy features, with the latter being the primary focus. Since the suggested model fulfils the

requirements and can be applied to a wide range of building topologies, it has been deemed to be an

optimal, generic, and parametric model for the management of building access.

Keywords: Card-controlled doors, Formal verification, System verification, PROMELA, SPIN

model checker.

 الملخص:

إحدى مشاكل نظام الأمن للمباني هي إستخدام الأبواب التي يتم التحكم فيها بالبطاقة الذكية عندما يتم تصنيف المستخدمين فأن

هم بإستخدام أبواب معينة فقط و ليس دائما في نماذج بطاقة التحكم توفر لهم طرق وصول مختلفة إعتمادا على تصنيفهم مما يسمح ل

على أساس هذا الإفتراض إستخدمت .كلا الإتجاهين حيث هناك حاجة إلى التحقق الرسمي من هذا النظام من أجل تحديد صلاحيته

بعد مقدمة . للتحقق من ميزات نموذج التحكم بالبطاقة (SPIN)بالأشتراك مع (Meta) هذه الدراسة البروتوكول أو عملية لغة

لمتطلبات النموذج تقدم هذه المقالة شرحا أساسيا لإفتراضات النموذج بالإضافة إلى تعريف المتغيرات العالمية , بعد ذلك يتم تحديد

A Proposed Formal Verification Model for Card-controlled Doors Using

PROMELA with SPIN Model Checker

Bryar Ahmad Hassan1, Shko Muhammed Qader2, Hawkar Saeed Ezat3, Hawkar Omar Ahmed 4,

Hozan Khalid Hamarashid5

1,3 Department of Information Technology, Kurdistan Institution for Strategic Studies and

Scientific Research, Sulaimani, Iraq
2,4 Department of Information Technology, University College of Goizha, Sulaimani, Iraq

2,5 Information Technology Department, Computer Science Institute, Sulaimani Polytechnic

University, Sulaymaniya, Iraq
4 Department of Information Technology, College of Commerce, University of Sulaimani,

Sulaimaniya, Iraq

Email: bryar.hassan@kissr.edu.krd1, shko.qader@spu.edu.iq 2, hawkarsaeed@kissr.edu.krd3

hawkar.omar@univsul.edu.iq4, hozan.khalid@spu.edu.iq5

http://dx.doi.org/10.25098/6.1.30
mailto:bryar.hassan@kissr.edu.krd
mailto:shko.qader@spu.edu.iq
mailto:hawkar.omar@univsul.edu.iq
mailto:hozan.khalid@spu.edu.iq

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

83

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

الأول الطابق ,أخذنا نموذجين و الذي سوف نجرب عليه النظام المقترح (SPIN) بإستخدام تقنية .المتغيرات حسب قيمتها الأصلية

للمبنى حيث من خلال هذا النظام سوف يتم التحكم بالأبواب و التجربة الثانية يعمل على خصائص النظام من حيث السرعة الأرضي

في النهاية نستطيع أن نقول أن هذا النظام يمكن إستخدامه في المباني و المواقع الذين يستعملون النظام .و تنفيذ الأنشطة الدقيقة للنظام

واب من خلال فحصه و مراقبته لأن النظام المقترح له القابلية على تنفيذ الأوامر المبرمجة المختلفة و القابلية على الذكي للتحكم بالأب

 .التأقلم مع متطلبات الموقع المستخدم

 SPIN مدقق نموذج أبواب يتم التحكم فيها بالبطاقة ، التحقق الرسمي ، التحقق من النظام ، بروميلا ،: الكلمات الدالة

 :پوختە

یەکێک لە گرنگترین کێشەی باڵەخانەکان و ئەو شوێنانەی کە سیستەمی زیرەکی ئەلەکترۆنییان هەیە، بەکارهێنانی کارتی

زیرەکە بۆ کۆنترۆڵکردنی دەرگاكانیان لە ڕووی چاودێریکردن و سێکورتییەوە. گرنگی ئەم کارەش لەوەدایە کە بە هۆی

ك هەر گروپەو یەشێوهند گروپێكى جیاواز، بەگروپ بۆ چە ین بەەتوانین بەکارهێنەران بكەکۆنترۆڵکردنی بەکارهێنەرەکانیانەوە، د

كى كانى سیستمى زیرهندییەتمەتایبە كێكى دیكە لەدەسەڵاتی جیاوازی خۆی هەبێت لە سیستەمە زیرەکە ئەلەکترۆنیەکاندا. یە

اندنی هەیە بە پێی هەر پێشنیارو پێویستییەکانی بەکارهێنەرانی لە لایەن م سیستەمە توانای خۆ گونجئە كە یەوهلیكترۆنى ئەئە

بەڕێوەبەری سیستەمەوە کە جێبەجێکردنەکەی بە سەر چەند پرۆسێسێکی جیاوازدا دەروات. لەم توێژینەوەدا تەکنەلۆجیاکانی

بەکارهێنانی مۆدێلی کۆنترۆڵکردنی)پرۆتۆکۆڵ(و)زمانی وەسفکردنی پرۆتۆکۆل(بەیەکەوە لەگەڵ)سپان(کە تایبەتمەندن بە

دەرگاکان بەکارهاتووە. هەروەها لە دوای پێناسەکردنی پێداویستییەکانی مۆدیلی سیستمەکە و روونکردنەوەی تەواوی بەشەکانی

هەر لە درێژەی .و بەکارهێنانی پارامیتەری تایبەت بۆ چۆنیەنی ئیشپێکردنی سیستەمەکە بە تەواوی روونکراوەتەوە

دنەوەکەماندا لەم توێژینەوەدا، لە گەڵ بەکارهێنانی تەکنەلۆجیای)سپان(، دوو نموونەمان وەرگرتووە کە سیستمی روونکر

بەهۆی ئەم سیستمەوە کۆنترۆلی دەرگاکانی پێشنیارکراوی لەسەر تاقی ئەکەینەوە. ئەوانیش قاتی خوارەوەی باڵەخانەیەکە كە

تایبەتمەندییەکانی سیستمەکە ئەکات لە رووی خێرایى و جێبەجێکردنی چالاکییە ئەکرێت. وە تاقیکردنەوەی دووەم کار لە سەر

لەکۆتاییدا ئەم سیستمە ئەتوانرێت بەکار بهێنرێت لە باڵەخانەکان و ئەو شوێنانەی کە سیستمی زیرەک بە .وردەکانی سیستمەکە

ە، لەبەر ئەوەی سیستمی پێشنیارکراو توانای کارئەهێنن بۆ کۆنترۆڵکردنی دەرگاکانیان لە ڕووی چاودێریکردن و سێکوێرتییەو

 .جێبەجێکردنی فەرمانە پرۆگرامینە جیاوازەکانی هەیە و ئەتوانێت خۆی بگونجێنێت لەگەڵ پێویستییەکانی شوێنی بەکار هێنراو

دێلهکان ردنهوەی مۆکارتی کۆنترۆڵکردن دەرگاکان، سهلماندی سيستهم، پشتگيريکردنی سيستهم، پرۆميلا، چێک: کلیلە وشەکان

 .بههۆی سپانهوە

1. INTRODUCTION

This article includes a PROMELA model of a security building system, which is called card-

controlled doors, and uses SPIN to verify some of its properties. The card-controlled model has

different access rights are assigned to users in different categories, allowing them to use only some

of the doors and not always in both directions[1]. This paper starts with presenting the requirements

of the model with a general description to explain model’s assumptions and define global variables.

Next, an initialisation of the variables is shown. Then, a description of case study 1 of the model with

its SPIN simulation is presented, which is about constructing a building fitted with a card operated

access system. Finally, case study 2 as a description and verification of the model’s correctness

properties is indicated.

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

84
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

2. Problem Statement

Card-controlled doors model includes two case studies. The first case study is to construct a

PROMELA model [2] to represent a building fitted with a card operated access system and simulate

it using SPIN simulation. The second case study is to construct an appropriate description of four

properties, and then use SPIN’s verification facilities to establish whether the model satisfies each

of them.

3. Model Description

This section is about a general and introductory description of the model that includes the model

assumptions and defining the global variables.

1. This model can be applied on every topology after changing the global variables. For the sake of

ease, this model and its report focus on the below building topology.

Figure 1: building topology sample

2. For the current building topology, User locations can be classified into three types that they are

defined as global variables in this model as follows:

Table 1: Zones of model

Location Identifier

Outside 0

ZoneA 1

ZoneB 2

In this model, these locations are defined by global variables named Outside, ZoneA, and ZoneB.

3. There are four doors for the current building topology. For this model, they are classified and

identified follows:

Table 2: doors classification

Door number Identifier

Door 1 0

Door 2 1

Door 3 2

Door 4 3

http://dx.doi.org/10.25098/6.1.30

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

85

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

The number of doors is identified by a defined global constant named NofDoors that holds values

from 0 to 3. Likewise, CoomonDoor is initialised to 2 as a common door between ZoneA and ZoneB.

4. Based on the model requirements, there are four groups of users and these groups are classified

and identified for this model as follows:

Table 3: classification of users

User type Identifier

UsersAB 0

UsersA 1

UsersB 2

Others 3

5. Doors, their locations (rooms), and their direction (inside and outside) are connected via a typedef

user-defined data structure called named DoorTopology as shown below. Because there are four

doors, an array of size four is declared based on this DoorTopology called doorTop.

12 typedef DoorTopology {

14 short doorLoc;

15 byte doorInside;

16 byte doorOutside

17 };

6. The four types of users and their authentication level to access the doors for both entering and

exiting directions are defined by using typedef user-defined data type as global, which is named

AccessTopology. By using this user-defined datatype, access as an array of size four is declared.

6 typedef AccessTopology {

8 byte userLocation;

9 bit doorIn [4];

10 bit doorOut [4]

11 };

7. To communicate between the users and doors, a synchronous channel is defined to communicate

between the users and doors, which is called swipe [3]. This channel has three values for user, door,

and user location.

12 chan swipe = [0] of {byte , byte, byte};

8. In this model, it is assumed that each user can enter or exit through a door in a different time.

9. It is assumed that when a user presents their card to a reader by a door, if the door opens, the user

passes through and the door is locked behind them; people do not swipe their cards and walk away,

not do they open for others, and “tailgating” does not happen.

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

86
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

4. The proposed Model Installation

All of the global variables are initialised in the initialisation process as the initial system state [4].

To run the processes for all the users, the user () process is run four times for each group of the users

and process door () runs one.

125 atomic { run user(0); run user(1); run user(2); run user(3); run door(); }

5. Case Study 1

In this case study, a PROMELA model is presented to construct a building fitted with a card

operated access system. In order for the model to be more generic and parametric in the building

topology and the user right access[5], all information, such as the connection between rooms and

doors and the rights to access specific doors[6] spending on the user type is defined as global

variables[7].

5.1 Model Description

The case study 1 of this model is done by defining two processes, which are user (byte u) and door

(). Both processes can communicate on each other via a synchronous channel[8]. The former process

presents the way of swiping the users’ card into the doors via the swipe channel. The parameter byte

u in user (byte u) process represents user. Doors are generated by random from 0 to 3. Users can

swipe their card into the doors that are in their own zone. For instance, usersAB can swipe their card

into door 1, 2, or 4 if their location is Outside. Similarly, users in ZoneA and ZoneB can swipe their

cards into the surrounded doors and the common door between ZoneA and ZoneB can be swiped by

users in either location. Thus, they can swipe their cards to the authorised doors[9], [10], and then

enter from a location into another. The latter process describes the receiving requests from the users

to access their permitted doors. After receiving a request from the users to enter or exit from the doors,

the door () process checks for authentication for both directions of the doors whether the user can

access the door or not. access[u].doorIn[d] is used to check the inside direction of the doors’

authentication and access[u].doorOut[d] is used to check the outside direction of the doors’

authentication. In coincident with doors’ authentication, the process checks each user’s current

location to be able to change and represent user’s location after entering or exiting a door.

5.2 Simulation Output

In this section, a SPIN simulation[11] of this model presents to gain early feedback on it.

1. Before simulating the model, the display mode parameters can be set up. Message Sequence

Chart (MSC) Panel, Time Sequence Panel, Data Values Panel are presented by default on main

windows SPIN simulator. Figure 2 depicts this display mode.

http://dx.doi.org/10.25098/6.1.30

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

87

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Figure 2: SPIN’s display mode parameter

Style parameters can be set up to Random (default)[12], Guided, and Interactive. Moreover, on

setting the parameters, the number of initial steps to skip as well as the maximum number of steps

can be specified in SPIN[13]. As it is shown in Figure 3.

Figure 3: setting Initial Steps Skipped and Maximum Number of Steps

The Initial Steps Skipped is set to zero and the Maximum Number of Steps is set to 1000 in this

simulation. Table 4 illustrated the most important parameters in the SPIN simulation mode with

their default values.

Table 4: SPIN simulation mode – setting parameters

Parameter Value

Mode Random, with seed (default); interactive; guided,

with trail

A full channel Blocks new messages (default); loses new

messages

Initial steps

skipped

Default value is 0

Maximum

number of steps

Default value is 10000

MSC max text

width

Default value is 20

MSC update

delay

Default value is 25

Figure 4 presents the SPIN’s setting parameters in simulation mode and also Figure 5 gives a

screenshot of interactive parameter mode.

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

88
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Figure 4: SPIN’s display mode parameter

Figure 5: SPIN’s interactive mode for resolution of all non-determinism

2. Data Values Panel presents data values across time that includes buffered channels, and global and

local variables. The values of all variables as shown in Figure 6 are initialised on the Data Values

Panel in the first step of simulation. This Figure is the first screenshot of this panel that shown the

values of buffered channel, global and local variables in the initial step. Similarly, Figure 7 is an

example of capturing variable values of step 579 in the execution steps.

Figure 6: initial step of data value panel

Figure 7: values of variable for a step

http://dx.doi.org/10.25098/6.1.30

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

89

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

3. By looking at the Time Sequence Panel that provides a graphical presentation of the process’s

execution over time, it can be seen that multiple perspectives are supported, such as execution steps

interleaved, one window per process, and one execution trace per process. Figure 8 shows a

screenshot of this panel. By pointing out a process in this panel, the execution line can be seen by

red font.

Figure 8: Time Sequence Panel

4. By looking at Message Sequence Chart (MSC), each of the four users swipes its card to their

accessed doors randomly through the channel. Users send requests and the doors receive them. If a

group of users is authenticated to pass through a door, the door will open directly in order to the

user pass through it. In addition, each group of users has its own communication line to the doors.

For example, Figure 9 depicts the movement of usersAB. The red lines show the movement of

usersAB through the rooms, and paying particular attention to how the location of this user is

updated and represented in the chart.

Figure 9: Message Sequence Chart

Similarly, the movement of the other users can be traced as it is shown on Table 5 based upon

the Message Sequence Chart.

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

90
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Table 5: MSC simulation tracing

UsersA

(user:2)

Doors

(door:5)

Location Comment

1!1,3,0 1?1,3,0 Outside Swiping and entering to ZoneA via door 4

1!1,3,1 1?1,3,1 ZoneA Swiping via door 4, but has not authorised

to exit

1!1,3,1 1?1,3,1 ZoneA Swiping via door 4, but has not authorised

to exit

1!1,2,1 1?1,2,1 ZoneA Swiping and exiting from ZoneA via door

3

1!1,2,2 1?1,2,2 ZoneB Swiping and exiting ZoneA via door 3

In regard with the communication between the users and doors, Figure 10 presents the way of

swiping the users’ cards to their authorised doors. This communication is done by the swipe channel

between the doors and users. Via clicking each of the communication channels between the users and

doors on MSC, the fragment of code(s) in relation with this communication can be spotted by red line

on the model. In relation with the MSC and the executed code, Figure 11 presents the executed line

of code when each communication between users and doors is spotted.

Figure 10: tracing movement of usersAB

Figure 11: channel communication between users and doors (send and receive values)

http://dx.doi.org/10.25098/6.1.30

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

91

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Figure 12: spotting communication channel with executed code

6. Case Study 2

In case study 2, a description and verification of the model’s correctness properties are identified.

6.1 Verification Description

In this section, an appropriate description of each of the following properties is constructed.

1. To verify the model whether it does or does not deadlock[14], end-state can be used to judge

whether a process is in a deadlock state or an accepTable waiting state in a non-terminating model.

End labels as one of the types of meta-labels can be used to verify for absence of reachable

deadlock states in this model. End labels have names that begin with end. The only valid end states

are where every PROMELA process has reached the end of its code, whereas any invalid end state

is a deadlock state. By using a valid end-state, every instantiated process has either terminated or

is blocked at a statement that is labelled as an end-state. The below fragment code is about using

the end-state in the model.

:: access[u].userLocation == Outside && d !=CommonDoor ->

46 if
47 :: access[u].userLocation ==doorTop[d].doorOutside ->

48 end1: swipe ! u, d, access[u].userLocation;

49 fi

2. To verify a user classed as “Others” is never able to open any door, never claim can be deployed

because it is typically used to specify a behaviour that never happens. To do so, a never-claim is

defined in this model to check the location of “Others” user as it should never be changed as

indication that unable to open any door and enter. The below fragment code is the never claim

process to verify this property.

56 never{

57 do

58 :: (access[3].userLocation != 0) -> break

59 :: else -> skip

60 od

61 }

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

92
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Never claim checks for invariance of this property (access[3].userLocation != 0). This property is a

boolean expression. While the boolean expression remains true, the claim process remains in its initial

state. As soon as the property is found to be false, the never-claim process ends and indicates an error.

Furthermore, the else->skip statement can be replaced with else, but this replacement might miss

some violations of the invariant.

3. To verify UsersA are able to enter zoneA through door 3 and able to leave the same way via door

4, LTL formula for verification can be used to specify that this property must hold at certain points

in execution. To do so, a formula is defined in this model, which is labelled as p1. This claim

evaluates the condition as a side-effect free, if it will be false, an error is reported. This claim can

be run by setting its name. If the claim is false, execution will be stopped with an error message.

22 ltl p1 { (access[1].userLocation == ZoneB -> access[1].userLocation == ZoneA) }

4. To verify if there is any circumstance where one of the several authorised users may be unable to

pass through a door, LTL formulas can be used. Users can pass those doors who are allowed to do

so, whereas they cannot pass through any unauthorised doors. For example, users labelled as

“Others” cannot access any door and users labelled as “UsersA” can pass through all of the doors.

However, there might be a circumstance that a user may not be enabled infinity often to pass

through a door and it may be scheduled to be enabled eventually. This situation is called weak

fairness. SPIN only supports weak fairness assumptions, but strong fairness can be enforced by

using LTL formulas. For example, usersA can be enforced to enter from ZoneB to RoomA by

using the below LTL formula:

23 ltl p2 { (access[2].userLocation == ZoneB -> access[2].userLocation == Outside) }

6.2 Verification Output

In this section, the usage of SPIN’s verification facilitates to establish whether the model satisfies

each of following correctness properties. To start with verifying the four correctness properties in

SPIN, the following SPIN verification parameters in Table 6 should be set up based on the needs of

case study 2 to represent. Figure 14 and Figure 13 depict the SPIN’s basic verification parameters

and advanced verification parameters.

Figure 13: SPIN verification parameters

http://dx.doi.org/10.25098/6.1.30

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

93

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Figure 14: advanced SPIN verification parameters

Table 6: SPIN verification parameters

Parameter Value

Safety Deadlocks; assertion; violations

Liveness Non-progress cycles; acceptance cycles; enforce weak fairness

Never claims Do not use never claim or ltl propery; use claim or claim name (opt)

Storage mode Exhaustive; hash-compact; bitstate search

Search mode Depth-first - partial order reduction; iterative search (shortest trail); breadth first;

report unreachable code

1. The model does not deadlock due to the use of meta-label in the model. Figure 13 and Figure 15

present setting the deadlock verification parameter and a deadlock result of the model. Based on

the verification result on the latter Figure, the model does not deadlock.

Figure 15: deadlock verification parameter

Figure 16: deadlock verification result

2. The verification result of the never claim has shown that if a user classed as “Others”, it never be

able to enter any door. Figure 17 and Figure 18 depict the details of setting never claim

parameter and its verification result.

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

94
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Figure 17: never claim parameter

Figure 18: never claim verification result

3. To verify the third property, the claim has given the result that UsersA are able to enter ZoneA

through door 3 and able to leave the same way or via door 4. Both Figure 19 and Figure 20

present the p1 claim parameter setting and its verification result.

Figure 19: assertion verification parameter

Figure 20: assertion verification result

4. It has verified an instance of weak verification that can be enforced by using LTL. Figure 21 and

Figure 22 give the screenshots of setting the LTL parameter and their verification result.

http://dx.doi.org/10.25098/6.1.30

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

95

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

Figure 21: LTL verification parameter

Figure 22: LTL verification result

7. Conclusion

In this article, a model of the card-controlled doors has presented by using PROMELA to build the

model and SPIN to verify some of its properties. Firstly, the requirements of the model with an outline

description have presented. Secondly, an initialisation of the variables has been shown. Thirdly, a

description of case study 1 of the model with its SPIN simulation has presented. Finally, case study

2 as a description and verification of the model’s correctness properties has indicated. Therefore, the

suggested model is a relatively optimal, generic, and parametric model for building access control

because it meets the requirements and it could be applied for different building topologies.

8. References

 [1] R. Nardone et al., “Modeling railway control systems in Promela,” in International Workshop

on Formal Techniques for Safety-Critical Systems, 2015, pp. 121–136.

[2] S. Löffler and A. Serhrouchni, “Creating implementations from PROMELA models,” 1996.

[3] D. J. C. A. P. Monteiro, “Coverage-based validation of embedded systems,” 2015.

[4] H. E. H. Santoso, H. Saputra, A. Shofyan, K. Anam, and E. Supraptono, “The Use of RFID

Sensors for Automatic Doorstop Application”.

[5] A. Yacoub, M. E.-A. Hamri, and C. Frydman, “Using DEv-PROMELA for modelling and

verification of software,” in Proceedings of the 2016 ACM SIGSIM Conference on Principles

of Advanced Discrete Simulation, 2016, pp. 245–253.

[6] Y. Choi, “Automated validation of IoT device control programs through domain-specific model

generation,” in International Conference on Software Engineering and Formal Methods, 2018,

pp. 254–268.

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

96
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

[7] V. S. Burenkov and A. S. Kamkin, “Checking parameterized Promela models of cache

coherence protocols,” Труды Института системного программирования РАН, vol. 28, no.

4, 2016.

[8] N. Dilley and J. Lange, “Bounded verification of message-passing concurrency in Go using

Promela and Spin,” arXiv preprint arXiv:2004.01323, 2020.

[9] M. I. Abbasi and L. M. Mackenzie, “A Flexible Approach for Modelling and Analysis of

Feature Interactions in Service-Oriented Product Lines.,” J. Softw., vol. 12, no. 10, pp. 823–

830, 2017.

[10] A. S. Alghamdi, “Features Interaction Detection and Resolution in Smart home systems Using

Agent-Based Negotiation Approach,” 2015.

[11] B. Vlaovič, A. Vreže, and Z. Brezočnik, “Applying automated model extraction for simulation

and verification of real-life SDL specification with Spin,” IEEE Access, vol. 5, pp. 5046–5058,

2017.

[12] Z. Soufiane, E.-N. Abdeslam, and B. Slimane, “An SDL to Discrete-Time PROMELA

Transformation of Home Area Network model,” in Proceedings of the 12th International

Conference on Intelligent Systems: Theories and Applications, 2018, pp. 1–5.

[13] M. Dabaghchian and M. A. Azgomi, “Model checking the observational determinism security

property using PROMELA and SPIN,” Formal Aspects of Computing, vol. 27, no. 5, pp. 789–

804, 2015.

[14] A. de Lucia, V. Deufemia, C. Gravino, and M. Risi, “Detecting the behavior of design patterns

through model checking and dynamic analysis,” ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 26, no. 4, pp. 1–41, 2018.

The PROMELA Model

The complete source code of the model for both task 1 and task 2 is attached as a separate file and

alternatively is shown below.

1 #define NofDoors 3 // number of the doors. 0:doo1, 1:door2, 2:door3, 3:door4

2 #define CommonDoor 2 // door number 3 (has index 2) is common between

room A and B.

3 #define Outside 0

4 #define ZoneA 1

5 #define ZoneB 2

6 // To define the four types of users and their authentication level to access the doors for both

entering and exiting directions.

7 typedef AccessTopology

8 {

9 byte userLocation; //1:RoomA, 2:RoomB, 0:Outside

10 bit doorIn [4];

http://dx.doi.org/10.25098/6.1.30

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

97

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

11 bit doorOut [4]

12 };

13 // To connect doors, their locations (rooms), and their direction (inside and outside) together.

14 typedef DoorTopology

15 {

16 short doorLoc;

17 byte doorInside;

18 byte doorOutside

19 };

20 AccessTopology access [4];

21 DoorTopology doorTop[4];

22 chan swipe = [0] of {byte , byte, byte}; //to communicate between the users and doors

23

24 ltl p1 { (access[1].userLocation == ZoneB -> access[1].userLocation == ZoneA) }

//verification 3

25 ltl p2 { (access[2].userLocation == ZoneB -> access[2].userLocation == Outside) }

//verification 4

26 proctype door(){

27 byte u, d, uLoc;

28 do

29 :: swipe ? u,d, uLoc -> // If the doors recieve a swiping card request to access.

30 if

31 //Users authorisation check to enter the doors (checking outside directions of the doors).

32 :: access[u].doorOut[d] == 1 && access[u].userLocation == Outside &&

doorTop[d].doorOutside == 0 ->

33 access[u].userLocation = doorTop[d].doorLoc;

34 //Users authorisation check to exit the doors (checking inside directions of the doors).

35 :: access[u].doorIn[d] ==1 && access[u].userLocation >= ZoneA ->

36 if

37 :: d == CommonDoor -> //if a user tries to exit via door 3 (common door)

38 byte temp = access[u].userLocation;

39 access[u].userLocation = doorTop[temp].doorInside;

40 //if a user tries to exit via the other doors.

41 :: access[u].userLocation == doorTop[d].doorInside && d != CommonDoor ->

42 access[u].userLocation = Outside;

43 fi

44 :: else -> skip;

45 fi

46 od

47 }

48 proctype user(byte u){

49 byte d = 0;

50 do

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

98
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

51 // counter for door numbers generator

52 :: d != 3 -> d++;

53 :: d != 0 -> d--;

54 // users allow to access those doors which are in its locations.

55 :: access[u].userLocation == Outside && d !=CommonDoor ->

56 if

57 :: access[u].userLocation ==doorTop[d].doorOutside -> // if the user tries to access one of

the doors

58 end1: swipe ! u, d, access[u].userLocation;

59 fi

60 :: access[u].userLocation ==ZoneA -> // if userlocation is in ZoneA

61 if

62 :: d == CommonDoor -> // if the user tries to exit from ZoneA and enter to ZoneB via door 3.

63 end2: swipe ! u, d, access[u].userLocation;

64 // if the user tries to access the other doors

65 :: access[u].userLocation == doorTop[d].doorInside && d != CommonDoor ->

66 end3: swipe ! u, d, access[u].userLocation;

67 :: else -> skip;

68 fi

69 // if the user tries to exit from ZoneA and enter to ZoneB via door 3.

70 :: access[u].userLocation == ZoneB ->

71 if

72 :: d == CommonDoor -> // if the user tries to exit from ZoneB and enter to ZoneA via door 3.

73 end4: swipe ! u, d, access[u].userLocation;

74 // if the user tries to access the other doors

75 :: access[u].userLocation == doorTop[d].doorInside && d != CommonDoor ->

76 end5: swipe ! u, d, access[u].userLocation;

77 :: else -> skip;

78 fi

79 :: else -> skip;

80 od

81 }

82 never{

83 do

84 :: (access[3].userLocation != Outside) -> break

85 :: else -> skip

86 od

87 }

88 init {

89 // doorTop array inilialisation.

90 doorTop[0].doorLoc = ZoneB; //Door 1 in RoomB

91 doorTop[0].doorInside = ZoneB;

http://dx.doi.org/10.25098/6.1.30

 The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

DOI: http://dx.doi.org/10.25098/6.1.30

99

This is

an open

access

 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

92 doorTop[0].doorOutside = Outside;

93

94 doorTop[1].doorLoc = ZoneB; //Door2 in RoomB

95 doorTop[1].doorInside = ZoneB;

96 doorTop[1].doorOutside = Outside;

97

98 doorTop[2].doorLoc = ZoneA; //Door3 in RoomA (and common with RoomB)

99 doorTop[2].doorInside = ZoneA;

100 doorTop[2].doorOutside = ZoneB;

101

102 doorTop[3].doorLoc = ZoneA; //Door4 in RoomA

103 doorTop[3].doorInside = ZoneA;

104 doorTop[3].doorOutside = Outside;

105

106 //access array initialisation

107 access[0].doorIn[0] = 1; // access[0] is UsersAB:

108 access[0].doorIn[1] = 1;

109 access[0].doorIn[2] = 1;

110 access[0].doorIn[3] = 1;

111 access[0].doorOut[0] = 1;

112 access[0].doorOut[1] = 1;

113 access[0].doorOut[2] = 1;

114 access[0].doorOut[3] = 1;

115 access[0].userLocation = Outside;

116

117 access[1].doorIn[0] = 1; //access[1] is UsersA:

118 access[1].doorIn[1] = 1;

119 access[1].doorIn[2] = 1;

120 access[1].doorIn[3] = 0;

121 access[1].doorOut[0] = 1;

122 access[1].doorOut[1] = 1;

123 access[1].doorOut[2] = 1;

124 access[1].doorOut[3] = 1;

125 access[1].userLocation = Outside;

126

127 access[2].doorIn[0] = 1; //access[2] is UsersB:

128 access[2].doorIn[1] = 1;

129 access[2].doorIn[2] = 0;

130 access[2].doorIn[3] = 0;

131 access[2].doorOut[0] = 1;

132 access[2].doorOut[1] = 1;

133 access[2].doorOut[2] = 0;

134 access[2].doorOut[3] = 0;

http://dx.doi.org/10.25098/6.1.30

The Scientific Journal of Cihan University – Sulaimaniya PP: 82-100
Volume (6), Issue (1), June 2022

ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

http://dx.doi.org/10.25098/6.1.30DOI:

100
 Distributed under the terms and conditions of the License 4.0 (CC BY-NC-ND 4.0)

135 access[2].userLocation = Outside;

136

137 access[3].doorIn[0] = 0; //access[3] is Others:

138 access[3].doorIn[1] = 0;

139 access[3].doorIn[2] = 0;

140 access[3].doorIn[3] = 0;

141 access[3].doorOut[0] = 0;

142 access[3].doorOut[1] = 0;

143 access[3].doorOut[2] = 0;

144 access[3].doorOut[3] = 0;

145 access[3].userLocation = Outside;

146

147 // running the processes:

148 atomic { run user(0); run user(1); run user(2); run user(3); run door() };

149 }

http://dx.doi.org/10.25098/6.1.30

